2,698 research outputs found
Some aspects of electrical conduction in granular systems of various dimensions
We report on measurements of the electrical conductivity in both a 2D
triangular lattice of metallic beads and in a chain of beads. The
voltage/current characteristics are qualitatively similar in both experiments.
At low applied current, the voltage is found to increase logarithmically in a
good agreement with a model of widely distributed resistances in series. At
high enough current, the voltage saturates due to the local welding of
microcontacts between beads. The frequency dependence of the saturation voltage
gives an estimate of the size of these welded microcontacts. The DC value of
the saturation voltage (~ 0.4 V per contact) gives an indirect measure of the
number of welded contact carrying the current within the 2D lattice. Also, a
new measurement technique provides a map of the current paths within the 2D
lattice of beads. For an isotropic compression of the 2D granular medium, the
current paths are localized in few discrete linear paths. This
quasi-onedimensional nature of the electrical conductivity thus explains the
similarity between the characteristics in the 1D and 2D systems.Comment: To be published in The European Physical Journal
Effects of electromagnetic waves on the electrical properties of contacts between grains
A DC electrical current is injected through a chain of metallic beads. The
electrical resistances of each bead-bead contacts are measured. At low current,
the distribution of these resistances is large and log-normal. At high enough
current, the resistance distribution becomes sharp and Gaussian due to the
creation of microweldings between some beads. The action of nearby
electromagnetic waves (sparks) on the electrical conductivity of the chain is
also studied. The spark effect is to lower the resistance values of the more
resistive contacts, the best conductive ones remaining unaffected by the spark
production. The spark is able to induce through the chain a current enough to
create microweldings between some beads. This explains why the electrical
resistance of a granular medium is so sensitive to the electromagnetic waves
produced in its vicinity.Comment: 4 pages, 5 figure
Ripples in Tapped or Blown Powder
We observe ripples forming on the surface of a granular powder in a container
submitted from below to a series of brief and distinct shocks. After a few
taps, the pattern turns out to be stable against any further shock of the same
amplitude. We find experimentally that the characteristic wavelength of the
pattern is proportional to the amplitude of the shocks. Starting from
consideration involving Darcy's law for air flow through the porous granulate
and avalanche properties, we build up a semi-quantitative model which fits
satisfactorily the set of experimental observations as well as a couple of
additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9
Discussion on: numerical methods in the definition of palynological assemblage zones in the Lower Karroo (Gondwana) of Rhodesia
Main articleSubsequent to the publication of the above paper (in which a number of errata appeared) certain points of discussion have been raised regarding the interpretation of the single axis spatial ordinations. In particular delineation of the numerical assemblage zones based upon the spacings between the clustered groups has been in question. In order to
understand fully the significance of these groupings the following points should be borne in mind.Non
Single Stellar Populations in the Near-Infrared - I. Preparation of the IRTF spectral stellar library
We present a detailed study of the stars of the IRTF spectral library to
understand its full extent and reliability for use with Stellar Population (SP)
modeling. The library consist of 210 stars, with a total of 292 spectra,
covering the wavelength range of 0.94 to 2.41 micron at a resolution R = 2000.
For every star we infer the effective temperature (Teff), gravity (logg) and
metallicity ([Z/Zsun]) using a full-spectrum fitting approach in a section of
the K band (2.19 to 2.34 micron) and temperature-NIR colour relations. We test
the flux calibration of these stars by calculating their integrated colours and
comparing them with the Pickles library colour-temperature relations. We also
investigate the NIR colours as a function of the calculated effective
temperature and compared them in colour-colour diagrams with the Pickles
library. This latter test shows a good broad-band flux calibration, important
for the SP models. Finally, we measure the resolution R as a function of
wavelength. We find that the resolution increases as a function of lambda from
about 6 angstrom in J to 10 angstrom in the red part of the K-band. With these
tests we establish that the IRTF library, the largest currently available
general library of stars at intermediate resolution in the NIR, is an excellent
candidate to be used in stellar population models. We present these models in
the next paper of this series.Comment: 17 pages, 19 figures. Accepted for publication in Astronomy and
Astrophysic
Aspects of palynology in Rhodesia
Main articleThis paper is based on a Doctoral Thesis presented to the University of the Witwatersrand,
which in whole or part will be published elsewhere at greater length. The essence of the research
is presented in three text figures which show the proposed correlations of Karoo strata on opposite
sides of the Rhodesian palaeowatershed, correlations with Karoo-equivalent strata in other parts of Gondwanaland, and palaeofloristic trends in Rhodesia during the Permo-Triassic.Non
A Gravitational Redshift Determination of the Mean Mass of White Dwarfs. DBA and DB Stars
We measure apparent velocities (v_app) of absorption lines for 36 white
dwarfs (WDs) with helium-dominated atmospheres -- 16 DBAs and 20 DBs -- using
optical spectra taken for the European Southern Observatory SN Ia progenitor
survey (SPY). We find a difference of 6.9+/-6.9 km/s in the average apparent
velocity of the H-alpha lines versus that of the HeI 5876AA for our DBAs. This
is a measure of the blueshift of this He line due to pressure effects. By using
this as a correction, we extend the gravitational redshift method employed by
Falcon et al. (2010) to use the apparent velocity of the HeI 5876AA line and
conduct the first gravitational redshift investigation of a group of WDs
without visible hydrogen lines. We use biweight estimators to find an average
apparent velocity, _BI, (and hence average gravitational redshift,
_BI) for our WDs; from that we derive an average mass, _BI. For the
DBAs, we find _BI = 40.8+/-4.7 km/s and derive _BI = 0.71 +0.04 -0.05
Msun. Though different from of DAs (32.57 km/s) at the 91% confidence
level and suggestive of a larger DBA mean mass than that for normal DAs derived
using the same method (0.647 +0.013 -0.014 Msun; Falcon et al. 2010), we do not
claim this as a stringent detection. Rather, we emphasize that the difference
between _BI of the DBAs and of normal DAs is no larger than 9.2
km/s, at the 95% confidence level; this corresponds to roughly 0.10 Msun. For
the DBs, we find ^He_BI = 42.9+/-8.49 km/s after applying the blueshift
correction and determine _BI = 0.74 +0.08 -0.09 Msun. The difference between
^He_BI of the DBs and of DAs is less than or equal to 11.5 km/s
(~0.12 Msun), at the 95% confidence level. The gravitational redshift method
indicates much larger mean masses than the spectroscopic determinations of the
same sample by Voss et al. (2007)...Comment: Accepted to the Astrophysical Journal, 10 pages double-column, 3
figures, 5 table
Observing the evaporation transition in vibro-fluidized granular matter
By shaking a sand box the grains on the top start to jump giving the picture
of evaporating a sand bulk, and a gaseous transition starts at the surface
granular matter (GM) bed. Moreover the mixture of the grains in the whole bed
starts to move in a cooperative way which is far away from a Brownian
description. In a previous work we have shown that the key element to describe
the statistics of this behavior is the exclusion of volume principle, whereby
the system obeys a Fermi configurational approach. Even though the experiment
involves an archetypal non-equilibrium system, we succeeded in defining a
global temperature, as the quantity associated to the Lagrange parameter in a
maximum entropic statistical description. In fact in order to close our
approach we had to generalize the equipartition theorem for dissipative
systems. Therefore we postulated, found and measured a fundamental dissipative
parameter, written in terms of pumping and gravitational energies, linking the
configurational entropy to the collective response for the expansion of the
centre of mass (c.m.) of the granular bed. Here we present a kinetic approach
to describe the experimental velocity distribution function (VDF) of this
non-Maxwellian gas of macroscopic Fermi-like particles (mFp). The evaporation
transition occurs mainly by jumping balls governed by the excluded volume
principle. Surprisingly in the whole range of low temperatures that we measured
this description reveals a lattice-gas, leading to a packing factor, which is
independent of the external parameters. In addition we measure the mean free
path, as a function of the driving frequency, and corroborate our prediction
from the present kinetic theory.Comment: 6 pages, 4 figures, submitted for publication September 1st, 200
- …
