587 research outputs found
On the chemical biology of the nitrite/sulfide interaction
The authors are grateful to the Susanne-Bunnenberg-Stiftung of the Düsseldorf Heart Center (to MK), the COST action BM1005 (European Network on Gasotransmitters), and the Faculty of Medicine, University of Southampton (to MF) for financial support.Sulfide (H2S/HS−) has been demonstrated to exert an astounding breadth of biological effects, some of which resemble those of nitric oxide (NO). While the chemistry, biochemistry and potential pathophysiology of the cross-talk between sulfide and NO have received considerable attention lately, a comparable assessment of the potential biological implications of an interaction between nitrite and sulfide is lacking. This is surprising inasmuch as nitrite is not only a known bioactive oxidation product of NO, but also efficiently converted to S-nitrosothiols in vivo; the latter have been shown to rapidly react with sulfide in vitro, leading to formation of S/N-hybrid species including thionitrite (SNO−) and nitrosopersulfide (SSNO−). Moreover, nitrite is used as a potent remedy against sulfide poisoning in the clinic. The chemistry of interaction between nitrite and sulfide or related bioactive metabolites including polysulfides and elemental sulfur has been extensively studied in the past, yet much of this information appears to have been forgotten. In this review, we focus on the potential chemical biology of the interaction between nitrite and sulfide or sulfane sulfur molecules, calling attention to the fundamental chemical properties and reactivities of either species and discuss their possible contribution to the biology, pharmacology and toxicology of both nitrite and sulfide.Publisher PDFPeer reviewe
Nitrosopersulfide (SSNO(-)) targets the Keap-1/Nrf2 redox system.
Nitric oxide (NO), hydrogen sulfide and polysulfides have been proposed to contribute to redox signaling by activating the Keap-1/Nrf2 stress response system. Nitrosopersulfide (SSNO(-)) recently emerged as a bioactive product of the chemical interaction of NO or nitrosothiols with sulfide; upon decomposition it generates polysulfides and free NO, triggering the activation of soluble guanylate cyclase, inducing blood vessel relaxation in vitro and lowering blood pressure in vivo. Whether SSNO(-) itself interacts with the Keap-1/Nrf2 system is unknown. We therefore sought to investigate the ability of SSNO(-) to activate Nrf2-dependent processes in human vascular endothelial cells, and to compare the pharmacological effects of SSNO(-) with those of its precursors NO and sulfide at multiple levels of target engagement. We here demonstrate that SSNO(-) strongly increases Nrf2 nuclear levels, Nrf2-binding activity and transactivation activity, thereby increasing mRNA expression of Hmox-1, the gene encoding for heme oxygenase 1, without adversely affecting cell viability. Under all conditions, SSNO(-) appeared to be more potent than its parent compounds, NO and sulfide. SSNO(-)-induced Nrf2 transactivation activity was abrogated by either NO scavenging with cPTIO or inhibition of thiol sulfuration by high concentrations of cysteine, implying a role for both persulfides/polysulfides and NO in SSNO(-) mediated Nrf2 activation. Taken together, our studies demonstrate that the Keap-1/Nrf2 redox system is a biological target of SSNO(-), enriching the portfolio of bioactivity of this vasoactive molecule to also engage in the regulation of redox signaling processes. The latter suggests a possible role as messenger and/or mediator in cellular sensing and adaptations processes
On the chemical biology of the nitrite/sulfide interaction
Sulfide (H2S/HS(-)) has been demonstrated to exert an astounding breadth of biological effects, some of which resemble those of nitric oxide (NO). While the chemistry, biochemistry and potential (patho)physiology of the cross-talk between sulfide and NO has received considerable attention lately, a comparable assessment of the potential biological implications of an interaction between nitrite and sulfide is lacking. This is surprising inasmuch as nitrite is not only a known bioactive oxidation product of NO, but also efficiently converted to S-nitrosothiols in vivo; the latter have been shown to rapidly react with sulfide in vitro, leading to formation of S/N-hybrid species including thionitrite (SNO(-)) and nitrosopersulfide (SSNO(-)). Moreover, nitrite is used as a potent remedy against sulfide poisoning in the clinic. The chemistry of interaction between nitrite and sulfide or related bioactive metabolites including polysulfides and elemental sulfur has been extensively studied in the past, yet much of this information appears to have been forgotten. In this review, we focus on the potential chemical biology of the interaction between nitrite and sulfide or sulfane sulfur molecules, calling attention to the fundamental chemical properties and reactivity of either species and discuss its possible contribution to the biology, pharmacology and toxicology of both nitrite and sulfide
Cephalosporin-3’-diazeniumdiolate NO-donor prodrug PYRRO-C3D enhances azithromycin susceptibility of non-typeable Haemophilus influenzae biofilms
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Objectives: PYRRO-C3D is a cephalosporin-3-diazeniumdiolate nitric oxide (NO)-donor prodrug designed to selectively deliver NO to bacterial infection sites. The objective of this study was to assess the activity of PYRRO-C3D against non-typeable Haemophilus influenzae (NTHi) biofilms and examine the role of NO in reducing biofilm-associated antibiotic tolerance.
Methods: The activity of PYRRO-C3D on in vitro NTHi biofilms was assessed through CFU enumeration and confocal microscopy. NO release measurements were performed using an ISO-NO probe. NTHi biofilms grown on primary ciliated respiratory epithelia at an air-liquid interface were used to investigate the effects of PYRRO-C3D in the presence of host tissue. Label-free LC/MS proteomic analyses were performed to identify differentially expressed proteins following NO treatment.
Results: PYRRO-C3D specifically released NO in the presence of NTHi, while no evidence of spontaneous NO release was observed when the compound was exposed to primary epithelial cells. NTHi lacking β-lactamase activity failed to trigger NO release. Treatment significantly increased the susceptibility of in vitro NTHi biofilms to azithromycin, causing a log-fold reduction in viability (p<0.05) relative to azithromycin alone. The response was more pronounced for biofilms grown on primary respiratory epithelia, where a 2-log reduction was observed (p<0.01). Label-free proteomics showed that NO increased expression of sixteen proteins involved in metabolic and transcriptional/translational functions.
Conclusions: NO release from PYRRO-C3D enhances the efficacy of azithromycin against NTHi biofilms, putatively via modulation of NTHi metabolic activity. Adjunctive therapy with NO mediated through PYRRO-C3D represents a promising approach for reducing biofilm associated antibiotic tolerance
Recommended from our members
Suppression of erythropoiesis by dietary nitrate.
In mammals, hypoxia-triggered erythropoietin release increases red blood cell mass to meet tissue oxygen demands. Using male Wistar rats, we unmask a previously unrecognized regulatory pathway of erythropoiesis involving suppressor control by the NO metabolite and ubiquitous dietary component nitrate. We find that circulating hemoglobin levels are modulated by nitrate at concentrations achievable by dietary intervention under normoxic and hypoxic conditions; a moderate dose of nitrate administered via the drinking water (7 mg NaNO₃/kg body weight/d) lowered hemoglobin concentration and hematocrit after 6 d compared with nonsupplemented/NaCl-supplemented controls. The underlying mechanism is suppression of hepatic erythropoietin expression associated with the downregulation of tissue hypoxia markers, suggesting increased pO₂. At higher nitrate doses, however, a partial reversal of this effect occurred; this was accompanied by increased renal erythropoietin expression and stabilization of hypoxia-inducible factors, likely brought about by the relative anemia. Thus, hepatic and renal hypoxia-sensing pathways act in concert to modulate hemoglobin in response to nitrate, converging at an optimal minimal hemoglobin concentration appropriate to the environmental/physiologic situation. Suppression of hepatic erythropoietin expression by nitrate may thus act to decrease blood viscosity while matching oxygen supply to demand, whereas renal oxygen sensing could act as a brake, averting a potentially detrimental fall in hematocrit.This work was supported by British Heart Foundation Studentship FS/09/050 (to T.A.). A.J.M. thanks the Research Councils UK for supporting his academic fellowship and the WYNG Foundation of Hong Kong for support. J.L.G is supported by the European Union Framework 7 Inheritance project, R.S.J. is supported by a Wellcome Trust Principal research fellowship, and M.F. is supported by funds from the Faculty of Medicine, University of Southampton
Does hypoxia play a role in the development of sarcopenia in humans? Mechanistic insights from the Caudwell Xtreme Everest Expedition
OBJECTIVES: Sarcopenia refers to the involuntary loss of skeletal muscle and is a predictor of physical disability/mortality. Its pathogenesis is poorly understood, although roles for altered hypoxic signaling, oxidative stress, adipokines and inflammatory mediators have been suggested. Sarcopenia also occurs upon exposure to the hypoxia of high altitude. Using data from the Caudwell Xtreme Everest expedition we therefore sought to analyze the extent of hypoxia-induced body composition changes and identify putative pathways associated with fat-free mass (FFM) and fat mass (FM) loss. METHODS: After baseline testing in London (75m), 24 investigators ascended from Kathmandu (1300m) to Everest base camp (EBC 5300m) over 13 days. Fourteen investigators climbed above EBC, eight of whom reached the summit (8848m). Assessments were conducted at baseline, during ascent and after one, six and eight week(s) of arrival at EBC. Changes in body composition (FM, FFM, total body water, intra- and extra-cellular water) were measured by bioelectrical impedance. Biomarkers of nitric oxide and oxidative stress were measured together with adipokines, inflammatory, metabolic and vascular markers. RESULTS: Participants lost a substantial, but variable, amount of body weight (7.3±4.9kg by expedition end; p<0.001). A progressive loss of both FM and FFM was observed, and after eight weeks, the proportion of FFM loss was 48% greater than FM loss (p<0.008). Changes in protein carbonyls (p<0.001) were associated with a decline in FM whereas 4-hydroxynonenal (p<0.001) and IL-6 (p<0.001) correlated with FFM loss. GLP-1 (r=-0.45, p<0.001) and nitrite (r=-0.29, p<0.001) concentration changes were associated with FFM loss. In a multivariate model, GLP-1, insulin and nitrite were significant predictors of FFM loss while protein carbonyls were predicted FM loss. CONCLUSIONS: The putative role of GLP-1 and nitrite as mediators of the effects of hypoxia on FFM is an intriguing finding. If confirmed, nutritional and pharmacological interventions targeting these pathways may offer new avenues for prevention and treatment of sarcopenia
The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols
It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols
Biological hydropersulfides and related polysulfides – a new concept and perspective in redox biology
The chemical biology of thiols (RSH, e.g., cysteine and cysteine‐containing proteins/peptides) has been a topic of extreme interest for many decades due to their reported roles in protein structure/folding, redox signaling, metal ligation, cellular protection, and enzymology. While many of the studies on thiol/sulfur biochemistry have focused on thiols, relatively ignored have been hydropersulfides (RSSH) and higher order polysulfur species (RSSnH, RSSnR, n > 1). Recent and provocative work has alluded to the prevalence and likely physiological importance of RSSH and related RSSnH. RSSH of cysteine (Cys‐SSH) has been found to be prevalent in mammalian systems along with Cys‐SSH‐containing proteins. The RSSH functionality has not been examined to the extent of other biologically relevant sulfur derivatives (e.g., sulfenic acids, disulfides, etc.), whose roles in cell signaling are strongly indicated. The recent finding of Cys‐SSH biosynthesis and translational incorporation into proteins is an unequivocal indication of its fundamental importance and necessitates a more profound look into the physiology of RSSH. In this Review, we discuss the currently reported chemical biology of RSSH (and related species) as a prelude to discussing their possible physiological roles
Perioperative Oxidative Stress: The Unseen Enemy.
Reactive oxygen species (ROS) are essential for cellular signaling and physiological function. An imbalance between ROS production and antioxidant protection results in a state of oxidative stress (OS), which is associated with perturbations in reduction/oxidation (redox) regulation, cellular dysfunction, organ failure, and disease. The pathophysiology of OS is closely interlinked with inflammation, mitochondrial dysfunction, and, in the case of surgery, ischemia/reperfusion injury (IRI). Perioperative OS is a complex response that involves patient, surgical, and anesthetic factors. The magnitude of tissue injury inflicted by the surgery affects the degree of OS, and both duration and nature of the anesthetic procedure applied can modify this. Moreover, the interindividual susceptibility to the impact of OS is likely to be highly variable and potentially linked to underlying comorbidities. The pathological link between OS and postoperative complications remains unclear, in part due to the complexities of measuring ROS- and OS-mediated damage. Exogenous antioxidant use and exercise have been shown to modulate OS and may have potential as countermeasures to improve postoperative recovery. A better understanding of the underlying mechanisms of OS, redox signaling, and regulation can provide an opportunity for patient-specific phenotyping and development of targeted interventions to reduce the disruption that surgery can cause to our physiology. Anesthesiologists are in a unique position to deliver countermeasures to OS and improve physiological resilience. To shy away from a process so fundamental to the welfare of these patients would be foolhardy and negligent, thus calling for an improved understanding of this complex facet of human biology
Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI).
AIM: Despite prompt revascularization of acute myocardial infarction (AMI), substantial myocardial injury may occur, in part a consequence of ischaemia reperfusion injury (IRI). There has been considerable interest in therapies that may reduce IRI. In experimental models of AMI, sodium nitrite substantially reduces IRI. In this double-blind randomized placebo controlled parallel-group trial, we investigated the effects of sodium nitrite administered immediately prior to reperfusion in patients with acute ST-elevation myocardial infarction (STEMI).
METHODS AND RESULTS: A total of 229 patients presenting with acute STEMI were randomized to receive either an i.v. infusion of 70 μmol sodium nitrite (n = 118) or matching placebo (n = 111) over 5 min immediately before primary percutaneous intervention (PPCI). Patients underwent cardiac magnetic resonance imaging (CMR) at 6-8 days and at 6 months and serial blood sampling was performed over 72 h for the measurement of plasma creatine kinase (CK) and Troponin I. Myocardial infarct size (extent of late gadolinium enhancement at 6-8 days by CMR-the primary endpoint) did not differ between nitrite and placebo groups after adjustment for area at risk, diabetes status, and centre (effect size -0.7% 95% CI: -2.2%, +0.7%; P = 0.34). There were no significant differences in any of the secondary endpoints, including plasma troponin I and CK area under the curve, left ventricular volumes (LV), and ejection fraction (EF) measured at 6-8 days and at 6 months and final infarct size (FIS) measured at 6 months.
CONCLUSIONS: Sodium nitrite administered intravenously immediately prior to reperfusion in patients with acute STEMI does not reduce infarct size
- …
