2,469 research outputs found

    Towards Semantic Fast-Forward and Stabilized Egocentric Videos

    Full text link
    The emergence of low-cost personal mobiles devices and wearable cameras and the increasing storage capacity of video-sharing websites have pushed forward a growing interest towards first-person videos. Since most of the recorded videos compose long-running streams with unedited content, they are tedious and unpleasant to watch. The fast-forward state-of-the-art methods are facing challenges of balancing the smoothness of the video and the emphasis in the relevant frames given a speed-up rate. In this work, we present a methodology capable of summarizing and stabilizing egocentric videos by extracting the semantic information from the frames. This paper also describes a dataset collection with several semantically labeled videos and introduces a new smoothness evaluation metric for egocentric videos that is used to test our method.Comment: Accepted for publication and presented in the First International Workshop on Egocentric Perception, Interaction and Computing at European Conference on Computer Vision (EPIC@ECCV) 201

    Structural development of laminar flow control aircraft chordwise wing joint designs

    Get PDF
    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for unavoidable eccentricity, which was reduced and reacted satisfactorily by the rib supports. It should also result in a relatively simple low-cost installation, and makes it easy to replace any panels damaged in the field

    Human Pose Estimation using Deep Consensus Voting

    Full text link
    In this paper we consider the problem of human pose estimation from a single still image. We propose a novel approach where each location in the image votes for the position of each keypoint using a convolutional neural net. The voting scheme allows us to utilize information from the whole image, rather than rely on a sparse set of keypoint locations. Using dense, multi-target votes, not only produces good keypoint predictions, but also enables us to compute image-dependent joint keypoint probabilities by looking at consensus voting. This differs from most previous methods where joint probabilities are learned from relative keypoint locations and are independent of the image. We finally combine the keypoints votes and joint probabilities in order to identify the optimal pose configuration. We show our competitive performance on the MPII Human Pose and Leeds Sports Pose datasets

    Effective Potential on Fuzzy Sphere

    Get PDF
    The effective potential of quantized scalar field on fuzzy sphere is evaluated to the two-loop level. We see that one-loop potential behaves like that in the commutative sphere and the Coleman-Weinberg mechanism of the radiatively symmetry breaking could be also shown in the fuzzy sphere system. In the two-loop level, we use the heavy-mass approximation and the high-temperature approximation to perform the evaluations. The results show that both of the planar and nonplanar Feynman diagrams have inclinations to restore the symmetry breaking in the tree level. However, the contributions from planar diagrams will dominate over those from nonplanar diagrams by a factor N^2. Thus, at heavy-mass limit or high-temperature system the quantum field on the fuzzy sphere will behave like those on the commutative sphere. We also see that there is a drastic reduction of the degrees of freedom in the nonplanar diagrams when the particle wavelength is smaller than the noncommutativity scale.Comment: Latex 18 pages, some typos correcte

    Non-Renormalization Theorems in Non-Renormalizable Theories

    Get PDF
    A perturbative non-renormalization theorem is presented that applies to general supersymmetric theories, including non-renormalizable theories in which the d2θ\int d^2\theta integrand is an arbitrary gauge-invariant function F(Φ,W)F(\Phi,W) of the chiral superfields Φ\Phi and gauge field-strength superfields WW, and the d4θ\int d^4\theta-integrand is restricted only by gauge invariance. In the Wilsonian Lagrangian, F(Φ,W)F(\Phi,W) is unrenormalized except for the one-loop renormalization of the gauge coupling parameter, and Fayet-Iliopoulos terms can be renormalized only by one-loop graphs, which cancel if the sum of the U(1) charges of the chiral superfields vanishes. One consequence of this theorem is that in non-renormalizable as well as renormalizable theories, in the absence of Fayet-Iliopoulos terms supersymmetry will be unbroken to all orders if the bare superpotential has a stationary point.Comment: 13 pages (including title page), no figures. Vanilla LaTe

    Leptogenesis from Pseudo-Scalar Driven Inflation

    Full text link
    We examine recent claims for a considerable amount of leptogenesis, in some inflationary scenarios, through the gravitational anomaly in the lepton number current. We find that when the short distances contributions are properly included the amount of lepton number generated is actually much smaller.Comment: JHEP style, 11 pages. Corrected typ

    Mirage Cosmology on Unstable D3-Brane Universe

    Full text link
    We study the geodesic motion of an unstable brane moving in a higher dimensional bulk spacetime. The tachyon which is coupled to a U(1) gauge field induces a non-trivial cosmological evolution. Interestingly enough, this system exhibits a much smoother initial cosmological singularity in comparison with former works.Comment: 6 pages. Talk at the RTN conference ``The Quest for Unification: Theory Confronts Experiment", Corfu, Greece, Sept, 11-18, 200

    Electromagnetic Contributions to the Schiff Moment

    Full text link
    The Schiff moment, \smij, is a parity and time reversal violating fermion-fermion coupling. The nucleus-electron Schiff moment generically gives the most important contribution to the electric dipole moments of atoms and molecules with zero net intrinsic electronic spin and nuclear spin 12{1 \over 2}. Here, the electromagnetic contribution to the Schiff moment, \emij, is considered. For a nucleon, the leading chirally violating contribution to this interaction is calculable in the chiral limit in terms of the parity and time reversal violating pion-nucleon coupling. For the Schiff moment of heavy nuclei, this chiral contribution is somewhat smaller than the finite size effect discussed previously in the literature.Comment: 7 pages, 1 figure (not included), Tex file, requires phyzzx, preprint SCIPP 93/4

    Cosmological evolution of scalar fields and gravitino dark matter in gauge mediation at low reheating temperatures

    Full text link
    We consider the dynamics of the supersymmetry-breaking scalar field and the production of dark matter gravitinos via its decay in a gauge-mediated supersymmetry breaking model with metastable vacuum. We find that the scalar field amplitude and gravitino density are extremely sensitive to the parameters of the hidden sector. For the case of an O'Raifeartaigh sector, we show that the observed dark matter density can be explained by gravitinos even for low reheating temperatures T_{R} < 10 GeV. Such low reheating temperatures may be implied by detection of the NLSP at the LHC if its thermal freeze-out density is in conflict with BBN.Comment: 11 pages RevTex. Extended discussion and minor corrections, conclusions unaltered. Version to be published in JCA

    Improving 3D Keypoint Detection from Noisy Data Using Growing Neural Gas

    Get PDF
    3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration
    corecore