42 research outputs found

    2'-Deoxyadenosine 5'-diphosphoribose is an endogenous TRPM2 superagonist.

    Get PDF
    Transient receptor potential melastatin 2 (TRPM2) is a ligand-gated Ca2+-permeable nonselective cation channel. Whereas physiological stimuli, such as chemotactic agents, evoke controlled Ca2+ signals via TRPM2, pathophysiological stimuli such as reactive oxygen species and genotoxic stress result in prolonged TRPM2-mediated Ca2+ entry and, consequently, apoptosis. To date, adenosine 5'-diphosphoribose (ADPR) has been assumed to be the main agonist for TRPM2. Here we show that 2'-deoxy-ADPR was a significantly better TRPM2 agonist, inducing 10.4-fold higher whole-cell currents at saturation. Mechanistically, this increased activity was caused by a decreased rate of inactivation and higher average open probability. Using high-performance liquid chromatography (HPLC) and mass spectrometry, we detected endogenous 2'-deoxy-ADPR in Jurkat T lymphocytes. Consistently, cytosolic nicotinamide mononucleotide adenylyltransferase 2 (NMNAT-2) and nicotinamide adenine dinucleotide (NAD)-glycohydrolase CD38 sequentially catalyzed the synthesis of 2'-deoxy-ADPR from nicotinamide mononucleotide (NMN) and 2'-deoxy-ATP in vitro. Thus, 2'-deoxy-ADPR is an endogenous TRPM2 superagonist that may act as a cell signaling molecule

    Activation of the P2X7 ion channel by soluble and covalently bound ligands

    Get PDF
    The homotrimeric P2X7 purinergic receptor has sparked interest because of its capacity to sense adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD) released from cells and to induce calcium signaling and cell death. Here, we examine the response of arginine mutants of P2X7 to soluble and covalently bound ligands. High concentrations of ecto-ATP gate P2X7 by acting as a soluble ligand and low concentrations of ecto-NAD gate P2X7 following ADP-ribosylation at R125 catalyzed by toxin-related ecto-ADP-ribosyltransferase ART2.2. R125 lies on a prominent cysteine-rich finger at the interface of adjacent receptor subunits, and ADP-ribosylation at this site likely places the common adenine nucleotide moiety into the ligand-binding pocket of P2X7

    Silica nanoparticles induce lung inflammation in mice via ROS/PARP/TRPM2 signaling-mediated lysosome impairment and autophagy dysfunction

    Get PDF
    Background Wide applications of nanoparticles (NPs) have raised increasing concerns about safety to humans. Oxidative stress and inflammation are extensively investigated as mechanisms for NPs-induced toxicity. Autophagy and lysosomal dysfunction are emerging molecular mechanisms. Inhalation is one of the main pathways of exposing humans to NPs, which has been reported to induce severe pulmonary inflammation. However, the underlying mechanisms and, more specifically, the interplays of above-mentioned mechanisms in NPs-induced pulmonary inflammation are still largely obscure. Considered that NPs exposure in modern society is often unavoidable, it is highly desirable to develop effective strategies that could help to prevent nanomaterials-induced pulmonary inflammation. Results Pulmonary inflammation induced by intratracheal instillation of silica nanoparticles (SiNPs) in C57BL/6 mice was prevented by PJ34, a poly (ADP-ribose) polymerase (PARP) inhibitor. In human lung bronchial epithelial (BEAS-2B) cells, exposure to SiNPs reduced cell viability, and induced ROS generation, impairment in lysosome function and autophagic flux. Inhibition of ROS generation, PARP and TRPM2 channel suppressed SiNPs-induced lysosome impairment and autophagy dysfunction and consequent inflammatory responses. Consistently, SiNPs-induced pulmonary inflammation was prevented in TRPM2 deficient mice. Conclusion The ROS/PARP/TRPM2 signaling is critical in SiNPs-induced pulmonary inflammation, providing novel mechanistic insights into NPs-induced lung injury. Our study identifies TRPM2 channel as a new target for the development of preventive and therapeutic strategies to mitigate nanomaterials-induced lung inflammation

    Deletion of the yeast homologue of Arf-Related Protein (ARP) disrupts vacuolar function

    No full text

    Adenine Dinucleotide Second Messengers and T-lymphocyte Calcium Signaling

    No full text
    Calcium signaling is a universal signal transduction mechanism in animal and plant cells. In mammalian T-lymphocytes calcium signaling is essential for activation and re-activation and thus important for a functional immune response. Since many years it has been known that both calcium release from intracellular stores and calcium entry via plasma membrane calcium channels are involved in shaping spatio-temporal calcium signals. Second messengers derived from the adenine dinucleotides NAD and NADP have been implicated in T cell calcium signaling. Nicotinic acid adenine dinucleotide phosphate (NAADP) acts as a very early second messenger upon T cell receptor/CD3 engagement, while cyclic ADP-ribose (cADPR) is mainly involved in sustained partial depletion of the endoplasmic reticulum by stimulating calcium release via ryanodine receptors. Finally, adenosine diphosphoribose (ADPR) a breakdown product of both NAD and cADPR activates a plasma membrane cation channel termed TRPM2 thereby facilitating calcium (and sodium) entry into T cells. Receptor-mediated formation, metabolism, and mode of action of these novel second messengers in T-lymphocytes will be reviewed

    Synthesis of phosphonoacetate analogues of the second messenger adenosine 5′-diphosphate ribose (ADPR)

    No full text
    Pyrophosphate replacement using phosphonoacetate isosteres – tools to study biological targets of ADPR.</p
    corecore