713 research outputs found

    Lipid changes within the epidermis of living skin equivalents observed across a time-course by MALDI-MS imaging and profiling

    Get PDF
    © 2015 Mitchell et al. Abstract Background: Mass spectrometry imaging (MSI) is a powerful tool for the study of intact tissue sections. Here, its application to the study of the distribution of lipids in sections of reconstructed living skin equivalents during their development and maturation is described. Methods: Living skin equivalent (LSE) samples were obtained at 14 days development, re-suspended in maintenance medium and incubated for 24 h after delivery. The medium was then changed, the LSE re-incubated and samples taken at 4, 6 and 24 h time points. Mass spectra and mass spectral images were recorded from 12 μm sections of the LSE taken at each time point for comparison using matrix assisted laser desorption ionisation mass spectrometry. Results: A large number of lipid species were identified in the LSE via accurate mass-measurement MS and MSMS experiments carried out directly on the tissue sections. MS images acquired at a spatial resolution of 50 μm × 50 μm showed the distribution of identified lipids within the developing LSE and changes in their distribution with time. In particular development of an epidermal layer was observable as a compaction of the distribution of phosphatidylcholine species. Conclusions: MSI can be used to study changes in lipid composition in LSE. Determination of the changes in lipid distribution during the maturation of the LSE will assist in the identification of treatment responses in future investigations

    Isolation and identification of a male-produced aggregation-sex pheromone for the velvet longhorned beetle, Trichoferus campestris.

    Get PDF
    The velvet longhorned beetle, Trichoferus campestris (Faldermann) ("VLB"; Coleoptera: Cerambycidae), is native to eastern Asia where it infests and damages a wide range of deciduous and coniferous tree species, including orchard and timber species. Immature stages of VLB are transported to new countries via international commerce, and populations have established outside the native range of the species. Here, we show that identification of pheromones of invasive pest species can be expedited by knowledge of the semiochemistry of related taxa. Histological sectioning revealed subcuticular, male-specific prothoracic glands connected to pits in the cuticle, which, in related species, are diagnostic for production of male-produced aggregation-sex pheromones, usually characterized by 2,3-alkanediol/hydroxyketone structural motifs. However, in preliminary field bioassays, beetles were not attracted by any known cerambycid pheromones. Subsequently, we identified a novel variant of the hydroxyketone motif ("trichoferone") from headspace volatiles of males. In field bioassays, synthetic trichoferone was more attractive to both sexes of VLB than previously developed high-release-rate ethanol lures, and attraction was strongly female biased. This study demonstrated the utility of the prothoracic gland trait for predicting pheromone use in cerambycid species in the subfamily Cerambycinae, and that identification of pheromones of novel species can be expedited by knowledge of pheromones of related species. Trichoferone should prove to be a valuable tool for detection of VLB in regions where the beetle is or may become established

    Detection and mapping of illicit drugs and their metabolites in fingermarks by MALDI MS and compatibility with forensic techniques

    Get PDF
    Despite the proven capabilities of Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI MS) in laboratory settings, research is still needed to integrate this technique into current forensic fingerprinting practice. Optimised protocols enabling the compatible application of MALDI to developed fingermarks will allow additional intelligence to be gathered around a suspect’s lifestyle and activities prior to the deposition of their fingermarks while committing a crime. The detection and mapping of illicit drugs and metabolites in latent fingermarks would provide intelligence that is beneficial for both police investigations and court cases. This study investigated MALDI MS detection and mapping capabilities for a large range of drugs of abuse and their metabolites in fingermarks; the detection and mapping of a mixture of these drugs in marks, with and without prior development with cyanoacrylate fuming or Vacuum Metal Deposition, was also examined. Our findings indicate the versatility of MALDI technology and its ability to retrieve chemical intelligence either by detecting the compounds investigated or by using their ion signals to reconstruct 2D maps of fingermark ridge details

    Cooking influence on physico-chemical fruit characteristics of eggplant (Solanum melongena L.)

    Get PDF
    Physico-chemical traits of three eggplant genotypes ("Tunisina", "Buia" and "L 305") were evaluated before and after two cooking treatments (grilling and boiling). Different genotypes revealed different changes after cooking, with "Tunisina" showing a better retention of phytochemicals with respect to other two genotypes. The main physical phenomena were water loss during grilling, and dry matter loss after boiling. Chlorogenic acid, the main phenolic in eggplant, resulted higher in grilled samples, while delphinidin glycosides resulted more retained in boiled samples. Glycoalkaloids, thiols and biogenic amines were generally stable, while 5-hydroxy-methyl-furfural was found only in grilled samples. Interestingly, Folin-Ciocalteu index and free radical scavenging capacity, measured with three different assays, were generally increased after cooking, with a greater formation of antioxidant substances in grilled samples. NMR relaxation experiments clarified the hypothesis about the changes of eggplant compounds in terms of decomposition of larger molecules and production of small ones after cooking

    The forensic exploitation of fingermark chemistry: a review

    Get PDF
    There is evidence that the use of fingerprints for the identification of an individual, either for civil or criminal purposes, has been considered in some form for over 2000 years (Barnes, 2011). The comparison of a mark left by an individual at a crime scene with sets of reference prints taken under controlled conditions is a cornerstone of forensic investigation, first being proposed in 1880 (Faulds, 1880). Following the generation of classification systems for fingermark patterns (Galton, 1892) and filing systems enabling databases to be searched (Henry, 1901), fingerprint comparison and identification has been successfully employed for over 120 years. The fact that fingerprint patterns are ‘unique’ (to the best of scientific knowledge) and persistent throughout life makes them a powerful identification tool. Indeed, the term ‘fingerprint’ is widely used across many other branches of science to describe something that is characteristic and easily distinguished from (e.g.) spectra of other nominally similar substances. In criminal investigations the focus is on locating marks that may have been left by the suspect at the crime scene. These can be of three principal types; a positive mark where material is transferred from the fingertip to the surface, a negative mark where the fingertip removes material (e.g. dust) from the surface, or a ‘plastic’ mark where the fingertip leaves a permanent impression in a soft substance such as putty. The classification of a positive mark can be further divided into a ‘patent’ mark where the material transferred is readily visible to the eye (e.g. mud, ink), or a ‘latent’ mark where the material transferred cannot typically be readily seen by eye and needs further enhancement to be seen. The chemistry of the material transferred from the finger to the surface is important to the visualisation of the contact trace. This is because chemical substances present can be utilised by a range of processes that either convert a latent mark into one that is visible or assist in further enhancing the pre-existing detail in a patent mark. The chemical development of fingermarks was observed as early as the 1860s (Quinche & Margot, 2010) and was already being explored in a more focused way in the 1920s (Mitchell, 1920), with a range of chemical processes targeting different constituents being proposed for use. This review will focus on the material that is ultimately transferred from the fingertip to the surface to form a fingermark. It will consider how this highly complex chemistry can be utilised by a wide range of chemical reagents, and by advanced analytical techniques in combination with imaging capabilities, to reveal the fingermark ridge detail and additional information contained within it

    Elections and media in digital times

    Get PDF
    The study zooms in on a key issue related to the 2019 World Press Freedom Day theme, which focused on “Media for Democracy: Journalism and Elections in Times of Disinformation”. New digitally-enabled tactics in political funding, campaigning and advertising, are often lacking in transparency. Meanwhile journalists, whose output can empower the electorate, are under increasing attack. It is against this backdrop that this Report identifies recent trends on disinformation, attacks on the safety of journalists, and disruption in election communications. The report lists possible responses in order to safeguard media freedom and integrity while strengthening news reportage on elections in digital times

    The analysis of latent fingermarks on polymer banknotes using MALDI-MS

    Get PDF
    In September 2016, the UK adopted a new Bank of England (BoE) £5 polymer banknote, followed by the £10 polymer banknote in September 2017. They are designed to be cleaner, stronger and have increased counterfeit resilience; however, fingermark development can be problematic from the polymer material as various security features and coloured/textured areas have been found to alter the effectiveness of conventional fingermark enhancement techniques (FETs). As fingermarks are one of the most widely used forms of identification in forensic cases, it is important that maximum ridge detail be obtained in order to allow for comparison. This research explores the use of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) profiling and imaging for the analysis of fingermarks deposited on polymer banknotes. The proposed methodology was able to obtain both physical and chemical information from fingermarks deposited in a range of scenarios including; different note areas, depletion series, aged samples and following conventional FETs. The analysis of forensically important molecular targets within these fingermarks was also explored, focussing specifically on cocaine. The ability of MALDI-MS to provide ridge detail and chemical information highlights the forensic applicability of this technique and potential for the analysis of fingermarks deposited onto this problematic surface

    A proteomic approach for the rapid, multi-informative and reliable identification of blood

    Get PDF
    Blood evidence is frequently encountered at the scene of violent crimes and can provide valuable intelligence in the forensic investigation of serious offences. Because many of the current enhancement methods used by crime scene investigators are presumptive, the visualisation of blood is not always reliable nor does it bear additional information. In the work presented here, two methods employing a shotgun bottom up proteomic approach for the detection of blood are reported; the developed protocols employ both an in solution digestion method and a recently proposed procedure involving immobilization of trypsin on hydrophobin Vmh2 coated MALDI sample plate. The methods are complementary as whilst one yields more identifiable proteins (as biomolecular signatures), the other is extremely rapid (5 minutes). Additionally, data demonstrate the opportunity to discriminate blood provenance even when two different blood sources are present in a mixture. This approach is also suitable for old bloodstains which had been previously chemically enhanced, as experiments conducted on a 9-year-old bloodstain deposited on a ceramic tile demonstrate
    corecore