6,295 research outputs found

    Curvature Diffusions in General Relativity

    Full text link
    We define and study on Lorentz manifolds a family of covariant diffusions in which the quadratic variation is locally determined by the curvature. This allows the interpretation of the diffusion effect on a particle by its interaction with the ambient space-time. We will focus on the case of warped products, especially Robertson-Walker manifolds, and analyse their asymptotic behaviour in the case of Einstein-de Sitter-like manifolds.Comment: 34 page

    Approximations of Sobolev norms in Carnot groups

    Full text link
    This paper deals with a notion of Sobolev space W1,pW^{1,p} introduced by J.Bourgain, H.Brezis and P.Mironescu by means of a seminorm involving local averages of finite differences. This seminorm was subsequently used by A.Ponce to obtain a Poincar\'e-type inequality. The main results that we present are a generalization of these two works to a non-Euclidean setting, namely that of Carnot groups. We show that the seminorm expressd in terms of the intrinsic distance is equivalent to the LpL^p norm of the intrinsic gradient, and provide a Poincar\'e-type inequality on Carnot groups by means of a constructive approach which relies on one-dimensional estimates. Self-improving properties are also studied for some cases of interest

    Harnack inequality and regularity for degenerate quasilinear elliptic equations

    Full text link
    We prove Harnack inequality and local regularity results for weak solutions of a quasilinear degenerate equation in divergence form under natural growth conditions. The degeneracy is given by a suitable power of a strong AA_\infty weight. Regularity results are achieved under minimal assumptions on the coefficients and, as an application, we prove C1,αC^{1,\alpha} local estimates for solutions of a degenerate equation in non divergence form
    corecore