1,087 research outputs found
Low optical polarisation at the core of the optically-thin jet of M87
We study the optical linear and circular polarisation in the optically-thin
regime of the core and jet of M87. Observations were acquired two days before
the Event Horizon Telescope (EHT) campaign in early April 2017. A high degree
( per cent) of linear polarisation (P) is detected in the
bright jet knots resolved at to
(-) from the centre, whereas the nucleus and inner jet
show P per cent. The position angle of the linear
polarisation shifts by degrees from each knot to the adjacent ones,
with the core angle perpendicular to the first knot. The nucleus was in a low
level of activity (P- per cent), and no emission was
detected from HST-1. No circular polarisation was detected either in the
nucleus or the jet above a level of P per cent,
discarding the conversion of P into P. A disordered
magnetic field configuration or a mix of unresolved knots polarised along axes
with different orientations could explain the low P. The latter
implies a smaller size of the core knots, in line with current interferometric
observations. Polarimetry with EHT can probe this scenario in the future. A
steep increase of both P and P with increasing
frequency is expected for the optically-thin domain, above the turnover point.
This work describes the methodology to recover the four Stokes parameters using
a wave-plate polarimeter.Comment: Accepted for publication in MNRAS. 10 pages, 8 figure
The anticancer properties of dietary polyphenols and its relation with apoptosis
Aberrantly regulated apoptosis is involved in the pathogenesis of several diseases and defective apoptosis leads to uncontrolled cell proliferation and tumorigenesis. Cancer is an example of a pathologic condition where the normal mechanisms of cell cycle regulation are dysfunctional either by excessive cell proliferation, inhibited/suppressed apoptosis or both. Dietary habits are estimated to contribute to, at least, one third of all human cancers, showing that dietary components can exacerbate or interfere with carcinogenesis. However, several epidemiological studies have revealed that some dietary factors can decrease the risk of different types of cancer. Apoptosis is suggested to be a crucial mechanism for the chemopreventive properties associated with several dietary factors by eliminating potentially deleterious (damaged/mutated) cells. Food, a readily available item, contains several promising chemopreventive agents. Polyphenols are serious candidates since they are responsible for the cancer protective properties of a diet rich in vegetables and fruits: numerous phenolic compounds showed antiproliferative and cytotoxic effects, and more specifically pro-apoptotic activities, in several cancer cells lines and animal tumor models. The aim of the present review is to analyze and summarize several aspects related to the molecular mechanisms of apoptosis induced by dietary factors with particular emphasis on polyphenols. Dietary factors that can activate cell death signals and induce apoptosis, preferentially in precancerous or malignant cells, and the study of their apoptotic inducing targets can represent a mean to devise new strategies for cancer prevention in the future
Evaluación de una unidad de microextracción basada en un sólido monolítico modificado con nanotubos de carbono multicapa carboxilados
Evaluación de la capacidad sorbente de los nanocuernos de carbono de pared simple (SWNHS) inmovilizados sobre fibra hueca en microextracción en fase sólida
The systematicity challenge to anti-representational dynamicism
After more than twenty years of representational debate in the cognitive sciences, anti-representational dynamicism may be seen as offering a rival and radically new kind of explanation of systematicity phenomena. In this paper, I argue that, on the contrary, anti-representational dynamicism must face a version of the old systematicity challenge: either it does not explain systematicity, or else, it is just an implementation of representational theories. To show this, I present a purely behavioral and representation-free account of systematicity. I then consider a case of insect sensorimotor systematic behavior: communicating behavior in honey bees. I conclude that anti-representational dynamicism fails to capture the fundamental trait of systematic behaviors qua systematic, i.e., their involving exercises of the same behavioral capacities. I suggest, finally, a collaborative strategy in pursuit of a rich and powerful account of this central phenomenon of high cognition at all levels of explanation, including the representational level
Algorithmic iteration for computational intelligence
Machine awareness is a disputed research topic, in some circles considered a crucial step in realising Artificial General Intelligence. Understanding what that is, under which conditions such feature could arise and how it can be controlled is still a matter of speculation. A more concrete object of theoretical analysis is algorithmic iteration for computational intelligence, intended as the theoretical and practical ability of algorithms to design other algorithms for actions aimed at solving well-specified tasks. We know this ability is already shown by current AIs, and understanding its limits is an essential step in qualifying claims about machine awareness and Super-AI. We propose a formal translation of algorithmic iteration in a fragment of modal logic, formulate principles of transparency and faithfulness across human and machine intelligence, and consider the relevance to theoretical research on (Super)-AI as well as the practical import of our results
Improved microextraction of selected triazines using polymer monoliths modified with carboxylated multi-walled carbon nanotubes
This article reports on the enhancement of the capacity of an acrylate-based monolithic solid sorbent by anchoring carboxylated multi-walled carbon nanotubes (c-MWCNTs) in its pores and on its surface. Monolithic poly(butyl acrylate-co-ethyleneglycol dimethacrylate) [poly(BA-co-EGDMA)] was synthetized inside a fused silica capillary via free-radical polymerization, and an ethanolic dispersion of c-MWCNTs was passed through the capillary. The resulting poly(BA-co-EGDMA-c-MWCNTs) monolith was characterized by scanning electron microscopy to confirm the presence of the c-MWCNTs. The effect of using three different kinds of carbon nanoparticles and the microextraction step were studied using triazine herbicides as model compounds. The use of c-MWCNTs resulted in best performance in terms of extraction enhancement (compared to carboxylated single-walled carbon nanotubes and oxidized single-walled carbon nanohorns). The use of these carbon nanoparticles improved the extraction of triazines in any case when compared to using a bare poly(BA-co-EGDMA) monolith. The triazines were then quantified by gas chromatography with mass spectrometric detection. Detection limits ranged from 0.03 to 0.1 µg·L-1 (except for simazine; 0.6 µg·L-1), and the precision (relative standard deviation) varied between 3.0 and 11.4%. The reproducibility between units is <14.3% (expressed as relative standard deviation) which demonstrates the robustness of the method. The method was applied to analyze an unknown sample of orange juice and gave a value of 0.18 µg·L-1 for prometryn. Finally, the analysis of spiked samples of water and orange juices yielded recoveries ranging from 81 to 113% and 75 to 125%, respectively
Preparation and evaluation of micro and meso porous silica monoliths with embedded carbon nanoparticles for the extraction of non-polar compounds from waters
A novel hybrid micro and meso porous silica monolith with embedded carbon nanoparticles (Si-CNPs monolith) was prepared inside a fused silica capillary (3 cm in length) and used as a sorbent for solid-phase microextraction. The hybrid monolithic capillary was synthetized by hydrolysis and polycondensation of a mixture of tetraethoxysilane (TEOS), ethanol, and three different carbon nanoparticles such as carboxylated single-walled carbon nanotubes (c-SWCNTs), carboxylated multi-walled carbon nanotubes (c-MWCNTs), and oxidized single-walled carbon nanohorns (o-SWNHs) via a two-step catalytic sol-gel process. Compared with silica monolith without carbon nanoparticles, the developed monolithic capillary column exhibited a higher extraction efficiency towards the analytes which can be ascribed to the presence of the carbon nanoparticles. In this regard, the best performance was achieved for silica monolith with embedded c-MWCNTs. The resulted monolithic capillaries were also characterized by scanning electron microscopy (SEM), elemental analysis and nitrogen intrusion porosimetry. Variables affecting to the preparation of the sorbent phase including three different carbon nanoparticles and extraction parameters were studied in depth using polycyclic aromatic hydrocarbons (PAHs) as target analytes. Gas chromatography-mass spectrometry was selected as instrumental technique. Detection limits range from 0.1 to 0.3 µg·L-1, and the inter-extraction units precision (expressed as relative standard deviation) is between 5.9 and 14.4 %
Amino acids in the development of Prodrugs
Although drugs currently used for the various types of diseases (e.g., antiparasitic, antiviral, antibacterial, etc.) are effective, they present several undesirable pharmacological and pharmaceutical properties. Most of the drugs have low bioavailability, lack of sensitivity, and do not target only the damaged cells, thus also affecting normal cells. Moreover, there is the risk of developing resistance against drugs upon chronic treatment. Consequently, their potential clinical applications might be limited and therefore, it is mandatory to find strategies that improve those properties of therapeutic agents. The development of prodrugs using amino acids as moieties has resulted in improvements in several properties, namely increased bioavailability, decreased toxicity of the parent drug, accurate delivery to target tissues or organs, and prevention of fast metabolism. Herein, we provide an overview of models currently in use of prodrug design with amino acids. Furthermore, we review the challenges related to the permeability of poorly absorbed drugs and transport and deliver on target organs.NV acknowledges support from Fundação para a Ciência e Tecnologia (FCT, Lisbon, Portugal) and FEDER (European Union), award number IF/00092/2014/CP1255/CT0004. NV also thanks FCT for the IF position and Fundação Manuel António da Mota (FMAM, Porto, Portugal) and Pfizer (Portugal) for support for the Nuno Vale Research Group. The contents of this report are solely the responsibility of the authors and do not necessarily represent the official views of the FCT, FMAM and Pfizer
Recommended from our members
Managing aging in nuclear power plants: Insights from NRC`s Maintenance Team Inspection reports
A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of sixty-seven of the reports issued on these in-depth team inspections have been reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant structures, systems, and components (SSCs). Relevant information has been extracted from these inspection reports sorted into several categories; including Specific Aging Insights, Preventive Maintenance, Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified
- …
