1,111 research outputs found

    Making an impact with nanocomposites

    Get PDF
    Nanoclays can improve the performance of injection-molded polypropylene components likely to be subjected to impact in servic

    Surface property effects of compounding a nanoclay masterbatch in PP injection moulding

    Get PDF
    Indicado para o prémio de melhor artigo mais inovador.The interest on the use of nanofillers in injection mouldings has been going on for more than a decade but a real breakthrough has not been achieved yet, especially in that mechanical properties are concerned. The nucleating effect of nanoclays in semicrystalline polymers suggests that surface effects may result interesting especially during processing. This paper includes some information on the surface properties of an injection moulding grade of polypropylene mixed with a commercial masterbatch of PP and 50% of organoclay. They were moulded as plates for testing in a prototype device for determining the coefficient of friction in as-moulding conditions. The surface was also characterised by depth sensing indentation tests. The through thickness microstructures of the mouldings were assessed by optical microscopy and differential scanning calorimetry, while surface morphology was assessed by X-ray diffraction. It was observed that independently of MB content, its addition caused a slight increase in elastic modulus and hardness in the skin layer.The friction properties directly associable to the product performance showed a slight improvement in terms of the dynamic friction coefficient. Conversely the static friction coefficient that is relevant in processing was no affected by the presence of the nanoclay

    Synergistic effects of nanoclay and SGF on tribological and dynamic properties of polypropylene composites

    Get PDF
    In recent year’s polymer/layered silicate (PLS) nanocomposites have attracted great interest, both in industry and in academia, because they often exhibit remarkable improvement in materials properties when compared with virgin polymer or conventional micro and macrocomposites. These improvements can include high moduli, increased strength and heat resistance, decreased gas permeability and flammability, and increased biodegradability of biodegradable polymers. However these properties are strongly influenced by how the clay is dispersed in the polymer. In this study the synergistic effects in PP+short glass fiber+nanoclay systems in the tribogical and dynamic properties in injection mouldings were analysed. The materials used were a Polypropylene Homopolymer, Nanoclay (montmorillonite layer silicate) for Polyolefin Nanocomposites in percentages of 2%, 6% and 10% and a Polypropylene Homopolymer with content of 10% and 30% of glass fiber reinforced. The various materials systems were characterized in terms of dynamic properties and tribological properties. Several tests were conducted which includes the measurements of coefficient of friction in conditions similar to the ejection phase in injection moulding process. The microstructure of the mouldings was characterized by DSC. Polymer properties are determined by the incorporation of nanoclays, SGF and by processing. Moreover influencing the microstructure of the mouldings and a synergistic effect of the nano and micro reinforcements are also observed

    Uni- and biaxial impact behavior of double-gated nanoclay-reinforced polypropylene injection moldings

    Get PDF
    Polypopylene/nanoclay three-dimensional parts were produced without intermediate steps by direct injection molding to explore the influence of flow features and nanoclay incorporation in their impact performance. The nanocomposite was obtained by direct compounding of commercial PP with nanoclay masterbatch. The as-molded morphology was analyzed by X-ray and TEM analyses in terms of skin-core structure and nanoclay particle dispersion. The nanoclay particles induced the reduction of b-form spherulites, a known toughener. The impact behavior was assessed in tensile and biaxial modes. The PP nanocomposite molding toughness was practically unaffected by the processing melt temperature and flow rate. Conversely the nanoclay presence is influent in the impact performance. Under biaxial stress impact, the regions close to weld lines are tougher than the bulk and the fracture develops with main crack paths along the flow direction and the weld line. Cracking along the weld line results from less macromolecular interpenetration and chain entanglement, and unfavorable nanoparticle orientation. It seems that a failure mechanism which involves nanoclay delamination and multiple matrix crazing explains the toughening of PP in the directions where the nanoparticle orientation with respect to loading is adequate.Contract grant sponsors: CONICET, ANPCyT from Argentina, MINCyT (Argentina) - FCT (Portugal), Universities Nacional de Mar del Plata and Minho

    Impact behavior of injected PP/nanoclay parts

    Get PDF
    This work attempts to contribute to bridge the gap between scientific challenges and industrial stakes regarding PP/nanoclay composites. Pieces of nanocomposites were obtained by direct injection of commercial PP mixed with a commercial MB of PP with 50% of organoclay, with a double-gated hot runner mould, which produced mouldings with a weld line. The moulding microstructure was assessed by POM and XRD, while the distribution and exfoliation grade of clay was evaluated by TEM and XRD. The typical skin-core structure was found, with a skin thickness wider in bulk than in weld line zones. Regarding clay platelets mostly intercalated structures were seen. The impact properties at room temperature were assessed by means of tensile and biaxial tests. Properties were monitored at different sites of the mouldings. At the weld line zone less energy was consumed under tensile conditions and exhibited higher apparent impact toughness under biaxial conditions than the bulk zone. Visual inspection of biaxially impacted samples showed that the orientation of polymer molecules and clay platelets induced by melt flow prevailed, and the weld line was not the determinant of the toughness of the mouldings. An optimum in impact performance was found for moulding with 3% of clay, since at larger clay contents platelets agglomerated and acted as stress raisers

    Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

    Get PDF
    The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.This work was funded by the EU-FP7 project BLUEPRINT (282510) and the Wellcome Trust (99148). We thank all twins for taking part in this study; Kerra Pearce and Mark Kristiansen (UCL Genomics) for processing the Illumina Infinium HumanMethylation450 BeadChips; Rasmus Bennet for technical assistance; and Laura Phipps for proofreading the manuscript. The BMBF Pediatric Diabetes Biobank recruits patients from the National Diabetes Patient Documentation System (DPV), and is financed by the German Ministry of Education and Research within the German Competence Net Diabetes Mellitus (01GI1106 and 01GI1109B). It was integrated into the German Center for Diabetes Research in January 2015. We thank the Swedish Research Council and SUS Funds for support. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers, and thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the NIHR Cambridge Biomedical Research Centre for funding. The Cardiovascular Epidemiology Unit is supported by the UK Medical Research Council (G0800270), BHF (SP/09/002), and NIHR Cambridge Biomedical Research Centre. Research in the Ouwehand laboratory is supported by the NIHR, BHF (PG-0310-1002 and RG/09/12/28096) and NHS Blood and Transplant. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is supported by the BHF Cambridge Centre of Excellence (RE/13/6/30180). A.D., E.L., L.C. and P.F. receive additional support from the European Molecular Biology Laboratory. A.K.S. is supported by an ADA Career Development Award (1-14-CD-17). B.O.B. and R.D.L. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) and European Federation for the Study of Diabetes, respectively

    Prediction of weld line location for injection molded thermoplastic components

    Get PDF
    Weld lines in polymeric injection molded parts occur wherever two or more melt fronts meet. They cause reduced mechanical properties and visual defects due to the poor intermolecular entanglement, molecular orientation induced by the fountain flow and the stress concentration effect of surface V-notch. A challenge related to these defects is that they are hard to detect and monitor because they’re usually not visible to the naked eye. Through this paper a numerical model for mold filling simulations has been developed aiming to predict the location of this defect and the initial meeting angle between the colliding flow fronts. A hybrid interface tracking technique was implemented in conjunction with a fix topology pseudo-quadratic mesh. Navier-Stokes equations were reduced to Hele-Shaw equations for thin plates. For validating purposes polypropylene plates injection moldings with weld lines were produced using a two-gated mold in a laboratory scale injector machine. Location of the defect was measure using an optical polariscope and then contrasted with simulation results. In order to establish the differences between 3D and Hele-Shaw models, predictions of weld line location were compared with the results provided by commercial injection molding simulation package Moldex3D.Publicado en: Mecánica Computacional vol. XXXV, no. 6Facultad de Ingenierí
    corecore