393 research outputs found
Spatial separation of large dynamical blue shift and harmonic generation
We study the temporal and spatial dynamics of the large amplitude and
frequency modulation that can be induced in an intense, few cycle laser pulse
as it propagates through a rapidly ionizing gas. Our calculations include both
single atom and macroscopic interactions between the non-linear medium and the
laser field. We analyze the harmonic generation by such pulses and show that it
is spatially separated from the ionization dynamics which produce a large
dynamical blue shift of the laser pulse. This means that small changes in the
initial laser focusing conditions can lead to large differences in the laser
frequency modulation, even though the generated harmonic spectrum remains
essentially unchanged.Comment: 4 pages, 5 figures. Under revisio
Spin-isospin nuclear response using the existing microscopic Skyrme functionals
Our paper aims at providing an answer to the question whether one can
reliably describe the properties of the most important spin-isospin nuclear
excitations, by using the available non-relativistic Skyrme energy functionals.
Our method, which has been introduced in a previous publication devoted to the
Isobaric Analog states, is the self-consistent Quasiparticle Random Phase
Approximation (QRPA). The inclusion of pairing is instrumental for describing a
number of experimentally measured spherical systems which are characterized by
open shells. We discuss the effect of isoscalar and isovector pairing
correlations. Based on the results for the Gamow-Teller resonance in Zr,
in Pb and in few Sn isotopes, we draw definite conclusions on the
performance of different Skyrme parametrizations, and we suggest improvements
for future fits. We also use the spin-dipole resonance as a benchmark of our
statements.Comment: Submitted to Phys. Rev.
Attosecond pulse shaping around a Cooper minimum
High harmonic generation (HHG) is used to measure the spectral phase of the
recombination dipole matrix element (RDM) in argon over a broad frequency range
that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well
with predictions based on the scattering phases and amplitudes of the
interfering s- and d-channel contributions to the complementary photoionization
process. The reconstructed attosecond bursts that underlie the HHG process show
that the derivative of the RDM spectral phase, the group delay, does not have a
straight-forward interpretation as an emission time, in contrast to the usual
attochirp group delay. Instead, the rapid RDM phase variation caused by the CM
reshapes the attosecond bursts.Comment: 5 pages, 5 figure
VUV frequency combs from below-threshold harmonics
Recent demonstrations of high-harmonic generation (HHG) at very high
repetition frequencies (~100 MHz) may allow for the revolutionary transfer of
frequency combs to the vacuum ultraviolet (VUV). This advance necessitates
unifying optical frequency comb technology with strong-field atomic physics.
While strong-field studies of HHG have often focused on above-threshold
harmonic generation (photon energy above the ionization potential), for VUV
frequency combs an understanding of below-threshold harmonic orders and their
generation process is crucial. Here we present a new and quantitative study of
the harmonics 7-13 generated below and near the ionization threshold in xenon
gas. We show multiple generation pathways for these harmonics that are
manifested as on-axis interference in the harmonic yield. This discovery
provides a new understanding of the strong-field, below-threshold dynamics
under the influence of an atomic potential and allows us to quantitatively
assess the achievable coherence of a VUV frequency comb generated through below
threshold harmonics. We find that under reasonable experimental conditions
temporal coherence is maintained. As evidence we present the first explicit VUV
frequency comb structure beyond the 3rd harmonic.Comment: 16 pages, 4 figures, 1 tabl
Spectral signature of short attosecond pulse trains
We report experimental measurements of high-order harmonic spectra generated
in Ar using a carrier-envelope-offset (CEO) stabilized 12 fs, 800nm laser field
and a fraction (less than 10%) of its second harmonic. Additional spectral
peaks are observed between the harmonic peaks, which are due to interferences
between multiple pulses in the train. The position of these peaks varies with
the CEO and their number is directly related to the number of pulses in the
train. An analytical model, as well as numerical simulations, support our
interpretation
Carrier-envelope shearing and isolated attosecond pulse generation
Conical Bessel-like pulses allow control of the propagation velocity of the main intensity peak.With few-cycle pulses, this leads to a controllable shearing effect with respect to the carrier-phase oscillation and a consequent variation of the instantaneous intensity during propagation. Numerical simulations highlight how this intensity modulation directly controls the atomic dipole phase in the process of high-order harmonic generation and isolates either the long or the short electron-trajectory contributions. We identify a propagation regime in which the harmonic field takes the form of an isolated pulse of 300 as duratio
Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra
We study the influence of phase matching on interference minima in high
harmonic spectra. We concentrate on structures in atoms due to interference of
different angular momentum channels during recombination. We use the Cooper
minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure
2d harmonic spectra in argon as a function of wavelength and angular
divergence. While we identify a clear CM in the spectrum when the target gas
jet is placed after the laser focus, we find that the appearance of the CM
varies with angular divergence and can even be completely washed out when the
gas jet is placed closer to the focus. We also show that the argon CM appears
at different wavelengths in harmonic and photo-absorption spectra measured
under conditions independent of any wavelength calibration. We model the
experiment with a simulation based on coupled solutions of the time-dependent
Schr\"odinger equation and the Maxwell wave equation, including both the single
atom response and macroscopic effects of propagation. The single atom
calculations confirm that the ground state of argon can be represented by its
field free symmetry, despite the strong laser field used in high harmonic
generation. Because of this, the CM structure in the harmonic spectrum can be
described as the interference of continuum and channels, whose relative
phase jumps by at the CM energy, resulting in a minimum shifted from the
photoionization result. We also show that the full calculations reproduce the
dependence of the CM on the macroscopic conditions. We calculate simple phase
matching factors as a function of harmonic order and explain our experimental
and theoretical observation in terms of the effect of phase matching on the
shape of the harmonic spectrum. Phase matching must be taken into account to
fully understand spectral features related to HHG spectroscopy
XUV Frequency Combs via Femtosecond Enhancement Cavities
We review the current state of tabletop extreme ultraviolet (XUV) sources
based on high harmonic generation (HHG) in femtosecond enhancement cavities
(fsEC). Recent developments have enabled generation of high photon flux (1014
photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the
spectral region from 40 nm - 120 nm. This level of performance has enabled
precision spectroscopy with XUV frequency combs and promises further
applications in XUV spectroscopic and photoemission studies. We discuss the
theory of operation and experimental details of the fsEC and XUV generation
based on HHG, including current technical challenges to increasing the photon
flux and maximum photon energy produced by this type of system. Current and
future applications for these sources are also discussed.Comment: invited review article, 38 page
Escape and Spreading Properties of Charge-Exchange Resonances in Bi 208
The properties of charge-exchange excitations of Pb with , i.e., the isobaric analog and Gamow-Teller resonances, are studied within
a self-consistent model making use of an effective force of the Skyrme type.
The well-known isobaric analog case is used to assess the reliability of the
model. The calculated properties of the Gamow-Teller resonance are compared
with recent experimental measurements with the aim of better understanding the
microscopic structure of this mode.Comment: 26 pages including references, figure captions and tables. Figures
are available upon request at [email protected] (decnet 32858::COLO).
Preprint code: IPNO/TH 94-2
Generation of broad XUV continuous high harmonic spectra and isolated attosecond pulses with intense mid-infrared lasers
We present experimental results showing the appearance of a near-continuum in
the high-order harmonic generation (HHG) spectra of atomic and molecular
species as the driving laser intensity of an infrared pulse increases. Detailed
macroscopic simulations reveal that these near-continuum spectra are capable of
producing IAPs in the far field if a proper spatial filter is applied. Further,
our simulations show that the near-continuum spectra and the IAPs are a product
of strong temporal and spatial reshaping (blue shift and defocusing) of the
driving field. This offers a possibility of producing IAPs with a broad range
of photon energy, including plateau harmonics, by mid-IR laser pulses even
without carrier-envelope phase stabilization.Comment: 7 pages, 5 figures, submitted to J.Phys. B (Oct 2011
- …
