169 research outputs found
Hemispheric Sunspot Numbers R_n and R_s: Catalogue and N-S asymmetry analysis
Sunspot drawings are provided on a regular basis at the Kanzelhoehe Solar
Observatory, Austria, and the derived relative sunspot numbers are reported to
the Sunspot Index Data Center in Brussels. From the daily sunspot drawings, we
derived the northern, R_n, and southern, R_s, relative sunspot numbers for the
time span 1975-2000. In order to accord with the International Sunspot Numbers
R_i, the R_n and R_s have been normalized to the R_i, which ensures that the
relation R_n + R_s = R_i is fulfilled. For validation, the derived R_n and R_s
are compared to the international northern and southern relative sunspot
numbers, which are available from 1992. The regression analysis performed for
the period 1992-2000 reveals good agreement with the International hemispheric
Sunspot Numbers. The monthly mean and the smoothed monthly mean hemispheric
Sunspot Numbers are compiled into a catalogue. Based on the derived hemispheric
Sunspot Numbers, we study the significance of N-S asymmetries and the
rotational behavior separately for both hemispheres. We obtain that about 60%
of the monthly N-S asymmetries are significant at a 95% level, whereas the
relative contributions of the northern and southern hemisphere are different
for different cycles. From the analysis of power spectra and autocorrelation
functions, we derive a rigid rotation with about 27 days for the northern
hemisphere, which can be followed for up to 15 periods. Contrary to that, the
southern hemisphere reveals a dominant period of about 28 days, whereas the
autocorrelation is strongly attenuated after 3 periods. These findings suggest
that the activity of the northern hemisphere is dominated by an active zone,
whereas the southern activity is mainly dominated by individual long-lived
sunspot groups.Comment: 9 pages, 8 figures, data catalogue online available at
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/70
Mutations in TRAPPC11 are associated with a congenital disorder of glycosylation.
Congenital disorders of glycosylation (CDG) are a heterogeneous and rapidly growing group of diseases caused by abnormal glycosylation of proteins and/or lipids. Mutations in genes involved in the homeostasis of the endoplasmic reticulum (ER), the Golgi apparatus (GA), and the vesicular trafficking from the ER to the ER-Golgi intermediate compartment (ERGIC) have been found to be associated with CDG. Here, we report a patient with defects in both N- and O-glycosylation combined with a delayed vesicular transport in the GA due to mutations in TRAPPC11, a subunit of the TRAPPIII complex. TRAPPIII is implicated in the anterograde transport from the ER to the ERGIC as well as in the vesicle export from the GA. This report expands the spectrum of genetic alterations associated with CDG, providing new insights for the diagnosis and the understanding of the physiopathological mechanisms underlying glycosylation disorders
Mutations in TRAPPC11 are associated with a congenital disorder of glycosylation.
Congenital disorders of glycosylation (CDG) are a heterogeneous and rapidly growing group of diseases caused by abnormal glycosylation of proteins and/or lipids. Mutations in genes involved in the homeostasis of the endoplasmic reticulum (ER), the Golgi apparatus (GA), and the vesicular trafficking from the ER to the ER-Golgi intermediate compartment (ERGIC) have been found to be associated with CDG. Here, we report a patient with defects in both N- and O-glycosylation combined with a delayed vesicular transport in the GA due to mutations in TRAPPC11, a subunit of the TRAPPIII complex. TRAPPIII is implicated in the anterograde transport from the ER to the ERGIC as well as in the vesicle export from the GA. This report expands the spectrum of genetic alterations associated with CDG, providing new insights for the diagnosis and the understanding of the physiopathological mechanisms underlying glycosylation disorders
Making Climate Change Mitigation and Adaptability Real in Africa with Conservation Agriculture
In this report, the authors have gathered essential information on how the agricultural sector can respond to climate change through Conservation Agriculture (CA). This document aims to serve as a basis for decision-making based on science and agricultural experimentation in Africa
The Yachting Charter Tourism SWOT: A Basic Analysis to Design Marketing Strategies
[eng] The Balearics’ economy is heavily dependent on tourism, generating revenue and employment; nevertheless, nowadays the archipelago is considered a traditional
destination that could be currently reaching its mature stage. In this context, the
new marketing guidelines for tourism adopted by the Balearic Government in
recent years are based on promoting the development of different tourism
products. The aim of this new strategy is to promote high value added products,
such as the yachting charter tourism, to explore new market segments and to
improve the image of the destination according to the consumer behaviour.This
paper identifies the strengths, weaknesses, opportunities and threats (SWOT) of
the yacht charter sector, using empirical evidence on the demand and supply side.
The results will be very useful for this sector to design and launch successfully
new marketing and promotion strategies and policies in order to maintain tourism
activity, increase tourist average expenditure, lengthen the tourist season and
change the image of the islands
A novel micronutrient blend mimics calorie restriction transcriptomics in multiple tissues of mice and increases lifespan and mobility in C. elegans.
We previously described a novel micronutrient blend that behaves like a putative calorie restriction mimetic. The aim of this paper was to analyze the beneficial effects of our micronutrient blend in mice and C. elegans, and compare them with calorie restriction. Methods: Whole transcriptomic analysis was performed in the brain cortex, skeletal muscle and heart in three groups of mice: old controls (30 months), old + calorie restriction and old + novel micronutrient blend. Longevity and vitality were tested in C. elegans. Results: The micronutrient blend elicited transcriptomic changes in a manner similar to those in the calorie-restricted group and different from those in the control group. Subgroup analysis revealed that nuclear hormone receptor, proteasome complex and angiotensinogen genes, all of which are known to be directly related to aging, were the most affected. Furthermore, a functional analysis in C. elegans was used. We found that feeding C. elegans the micronutrient blend increased longevity as well as vitality. Conclusions: We describe a micronutrient supplement that causes similar changes (transcriptomic and promoting longevity and vitality) as a calorie restriction in mice and C. elegans, respectively, but further studies are required to confirm these effects in human
Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites
The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions.
The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness
of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence
were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density
and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that
the wood in the starch composites did not prevent water loss from the samples.Peer reviewe
Calorie restriction rescues mitochondrial dysfunction in Adck2-Deficient skeletal muscle
ADCK2 haploinsufficiency-mediated mitochondrial coenzyme Q deficiency in skeletal muscle causes mitochondrial myopathy associated with defects in beta-oxidation of fatty acids, aged-matched metabolic reprogramming, and defective physical performance. Calorie restriction has proven to increase lifespan and delay the onset of chronic diseases associated to aging. To study the possible treatment by food deprivation, heterozygous Adck2 knockout mice were fed under 40% calorie restriction (CR) and the phenotype was followed for 7 months. The overall glucose and fatty acids metabolism in muscle was restored in mutant mice to WT levels after CR. CR modulated the skeletal muscle metabolic profile of mutant mice, partially rescuing the profile of WT animals. The analysis of mitochondria isolated from skeletal muscle demonstrated that CR increased both CoQ levels and oxygen consumption rate (OCR) based on both glucose and fatty acids substrates, along with mitochondrial mass. The elevated aerobic metabolism fits with an increase of type IIa fibers, and a reduction of type IIx in mutant muscles, reaching WT levels. To further explore the effect of CR over muscle stem cells, satellite cells were isolated and induced to differentiate in culture media containing serum from animals in either ad libitum or CR diets for 72 h. Mutant cells showed slower differentiation alongside with decreased oxygen consumption. In vitro differentiation of mutant cells was increased under CR serum reaching levels of WT isolated cells, recovering respiration measured by OCR and partially beta-oxidation of fatty acids. The overall increase of skeletal muscle bioenergetics following CR intervention is paralleled with a physical activity improvement, with some increases in two and four limbs strength tests, and weights strength test. Running wheel activity was also partially improved in mutant mice under CR. These results demonstrate that CR intervention, which has been shown to improve age-associated physical and metabolic decline in WT mice, also recovers the defective aerobic metabolism and differentiation of skeletal muscle in mice caused by ADCK2 haploinsufficiency.This work was supported by Junta de Andalucía grant BIO-177, the Instituto de Salud Carlos III FIS grant FIS PI20/00541, CIBERER (U729)-ISCIII, the FEDER Funding Program from the European Union and the Spanish Ministry of Science, Innovation and Universities grant RED2018-102576-T. This work was supported by the Spanish Ministry of Education, Culture and Sports through fellowship FPU16/03264 to JH-C, and the Association Française contre les Myopathies (AFM) through fellowship grant #22450 to CV-G. This work was funded in part by the Intramural Research Program of the National Institute on Aging, NIH. This research was also supported by the Instituto de Salud Carlos III (PI19/01310) (Co-funded by the European Union) and by the Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) (2017: SGR 1428) and the CERCA
Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions
Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies. © 2014 The Author(s)
- …
