546 research outputs found
Brain Differences in the Prefrontal Cortex, Amygdala, and Hippocampus in Youth with Congenital Adrenal Hyperplasia
Context: Classical Congenital Adrenal Hyperplasia (CAH) due to 21-hydroxylase deficiency results in hormone imbalances present both prenatally and postnatally that may impact the developing brain.
Objective: To characterize gray matter morphology in the prefrontal cortex and subregion volumes of the amygdala and hippocampus in youth with CAH, compared to controls.
Design: A cross-sectional study of 27 CAH youth (16 female; 12.6 ± 3.4 year) and 35 typically developing, healthy controls (20 female; 13.0 ± 2.8 year) with 3-T magnetic resonance imaging scans. Brain volumes of interest included bilateral prefrontal cortex, and nine amygdala and six hippocampal subregions. Between-subject effects of group (CAH vs control) and sex, and their interaction (group-by-sex) on brain volumes were studied, while controlling for intracranial volume (ICV) and group differences in body mass index and bone age.
Results: CAH youth had smaller ICV and increased cerebrospinal fluid volume compared to controls. In fully-adjusted models, CAH youth had smaller bilateral, superior and caudal middle frontal volumes, and smaller left lateral orbito-frontal volumes compared to controls. Medial temporal lobe analyses revealed the left hippocampus was smaller in fully-adjusted models. CAH youth also had significantly smaller lateral nucleus of the amygdala and hippocampal subiculum and CA1 subregions.
Conclusions: This study replicates previous findings of smaller medial temporal lobe volumes in CAH patients, and suggests that lateral nucleus of the amygdala, as well as subiculum and subfield CA1 of the hippocampus are particularly affected within the medial temporal lobes in CAH youth
What Automated Planning Can Do for Business Process Management
Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle
Un caso de síndrome de mano ajena fronto-calloso
Setenes Jornades de Foment de la Investigació de la FCHS (Any 2001-2002)Diferentes estudios teóricos (Feinberg, y cols., 1992; Baynes y cols. 1997; Doody y Jankovic 1992)
han mostrado que el síndrome de la mano ajena (Brion y Jedynak 1972) puede tener dos manifestaciones
que son: mano ajena con afectación callosa y mano ajena de afectación fronto-callosa. Este
estudio presenta el caso de una mujer de 63 años relacionado con este último síndrome. Ingresada
por torpeza en miembros inferiores, alteración del habla, hemiparesia derecha y cefalea. Las técnicas
de neuroimagen mostraron signos indirectos de infarto en la arteria cerebral anterior izquierda que
afectaban al área motora suplementaria y el cuerpo calloso. Las pruebas neuropsicológicas evaluaron
funciones de atención, lenguaje, memoria, gnosias, praxias y funciones ejecutivas. Los resultados
de las pruebas indicaron déficits en distintas funciones cognitivas superiores entre las que destacaba
el síndrome de utilización compulsiva de objetos. Para profundizar en el análisis de este síndrome
se planteó un estudio Resonancia Magnética Funcional del que se desprende que el área premotora
contralateral es la responsable de los movimientos de la mano ajena
IMMUNOPARALYSIS IN CRITICAL ILL PATIENTS AND ITS ASSOCIATION TO NOSOCOMIAL AND OPPORTUNIST INFECTIONS. A PRELIMINARY STUDY
Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate
During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55(Gag) is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4(+) T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55(Gag) membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55(Gag) with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.Universidad de Buenos Aires and CONICET doctoral fellowships, Agencia Nacional de Pro-
moción Científica y Tecnológica (Argentina) grants: (2010-1681, 2012-00353), Creative and Novel
Ideas in HIV Research Program, University of Alabama at Birmingham Center for AIDS Research funding grant P30 AI027767-24
Extracellular DNA: A major proinflammatory component of Pseudomonas aeruginosa biofilms
We previously demonstrated that extracellular bacterial DNA activates neutrophils through a CpG- and TLR9-independent mechanism. Biofilms are microbial communities enclosed in a polymeric matrix that play a critical role in the pathogenesis of many infectious diseases. Because extracellular DNA is a key component of biofilms of different bacterial species, the aim of this study was to determine whether it plays a role in the ability of biofilms to induce human neutrophil activation. We found that degradation of matrix extracellular DNA with DNase I markedly reduced the capacity of Pseudomonas aeruginosa biofilms to induce the release of the neutrophil proinflammatory cytokines IL-8 and IL-1β (>75%); reduced the upregulation of neutrophil activation markers CD18, CD11b, and CD66b (p < 0.001); reduced the number of bacteria phagocytosed per neutrophil contacting the biofilm; and reduced the production of neutrophil extracellular traps. Consistent with these findings, we found that biofilms formed by the lasI rhlI P. aeruginosa mutant strain, exhibiting a very low content of matrix extracellular DNA, displayed a lower capacity to stimulate the release of proinflammatory cytokines by neutrophils, which was not decreased further by DNase I treatment. Together, our findings support that matrix extracellular DNA is a major proinflammatory component of P. aeruginosa biofilms. Copyright © 2010 by The American Association of Immunologists, Inc.Fil:Fuxman Bass, J.I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Russo, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gabelloni, M.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Giordano, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Zorreguieta, Á. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Trevani, A.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Brain Differences in the Prefrontal Cortex, Amygdala, and Hippocampus in Youth with Congenital Adrenal Hyperplasia
Context: Classical Congenital Adrenal Hyperplasia (CAH) due to 21-hydroxylase deficiency results in hormone imbalances present both prenatally and postnatally that may impact the developing brain.
Objective: To characterize gray matter morphology in the prefrontal cortex and subregion volumes of the amygdala and hippocampus in youth with CAH, compared to controls.
Design: A cross-sectional study of 27 CAH youth (16 female; 12.6 ± 3.4 year) and 35 typically developing, healthy controls (20 female; 13.0 ± 2.8 year) with 3-T magnetic resonance imaging scans. Brain volumes of interest included bilateral prefrontal cortex, and nine amygdala and six hippocampal subregions. Between-subject effects of group (CAH vs control) and sex, and their interaction (group-by-sex) on brain volumes were studied, while controlling for intracranial volume (ICV) and group differences in body mass index and bone age.
Results: CAH youth had smaller ICV and increased cerebrospinal fluid volume compared to controls. In fully-adjusted models, CAH youth had smaller bilateral, superior and caudal middle frontal volumes, and smaller left lateral orbito-frontal volumes compared to controls. Medial temporal lobe analyses revealed the left hippocampus was smaller in fully-adjusted models. CAH youth also had significantly smaller lateral nucleus of the amygdala and hippocampal subiculum and CA1 subregions.
Conclusions: This study replicates previous findings of smaller medial temporal lobe volumes in CAH patients, and suggests that lateral nucleus of the amygdala, as well as subiculum and subfield CA1 of the hippocampus are particularly affected within the medial temporal lobes in CAH youth
Growth hormone (GH)-induced reconstitution of CD8+ CD28+ T lymphocytes in a rare case of severe lymphopenia associated with Juvenile Haemochromatosis and Turner's syndrome
Recommended from our members
Economic Warfare in the 1980's, Strikes, Lockouts, Boycotts and Corporate Campaigns
- …
