952 research outputs found

    Metallic Xenon, Molecular Condensates, and Superconductivity

    Full text link
    A possibility of explaining the light absorption observed to occur under pressure-induced xenon metallization as due to the transition to the superconducting state is analyzed. The mechanism of the van der Waals bonding is discussed.Comment: LaTeX 2.09 (RevTeX), 4 pages, 4 PostScript figures included in tex

    SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1

    Get PDF
    BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity

    Slowdown of the thermohaline circulation causes enhanced maritime climate influence and snow cover over Europe

    Get PDF
    The ocean thermohaline circulation (THC) in the Atlantic is generally accepted to contribute to the comparatively mild climate of western and northern Europe. Global climate models (Manabe and Stouffer, 1995; Vellinga and Wood, 2002) and palaeo-observations (McManus et al., 2004) associate periods of weak or absent Atlantic THC with considerably lower temperatures in and around the northern North Atlantic. However, it is uncertain whether such change would spread longitudinally around the globe or would be limited to a narrow strip near the coast (Vellinga and Wood, 2002; Mikolajewicz et al., 1997). Moreover, the relatively low spatial resolution of global climate models has prohibited more detailed statements about possible or probable THC-induced climate change in Europe. Here, we first use a global climate model to perform a THC-slowdown sensitivity experiment, with a weakening of the MOC by about 50%, and the associated control experiment. The two global simulations are then used to force a regional climate model for Europe; the regional control and sensitivity simulations are analyzed here. We find stronger maritime influence over Europe than in the case with no MOC weakening, which surprisingly results in cooling (because sea surface temperatures drop), contrary to today's conditions, where maritime influence leads to milder conditions in Europe. Lower temperatures cause reduced precipitation, increased snow cover and higher albedo leading to positive feedback

    Insect pathogens as biological control agents: back to the future

    Get PDF
    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 15 years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of MCAs, particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for medically important pests including dipteran vectors,. These pathogens combine the advantages of chemical pesticides and microbial control agents (MCAs): they are fast acting, easy to produce at a relatively low cost, easy to formulate, have a long shelf life and allow delivery using conventional application equipment and systemics (i.e. in transgenic plants). Unlike broad spectrum chemical pesticides, B. thuringiensis toxins are selective and negative environmental impact is very limited. Of the several commercially produced MCAs, B. thuringiensis (Bt) has more than 50% of market share. Extensive research, particularly on the molecular mode of action of Bt toxins, has been conducted over the past two decades. The Bt genes used in insect-resistant transgenic crops belong to the Cry and vegetative insecticidal protein families of toxins. Bt has been highly efficacious in pest management of corn and cotton, drastically reducing the amount of broad spectrum chemical insecticides used while being safe for consumers and non-target organisms. Despite successes, the adoption of Bt crops has not been without controversy. Although there is a lack of scientific evidence regarding their detrimental effects, this controversy has created the widespread perception in some quarters that Bt crops are dangerous for the environment. In addition to discovery of more efficacious isolates and toxins, an increase in the use of Bt products and transgenes will rely on innovations in formulation, better delivery systems and ultimately, wider public acceptance of transgenic plants expressing insect-specific Bt toxins. Fungi are ubiquitous natural entomopathogens that often cause epizootics in host insects and possess many desirable traits that favor their development as MCAs. Presently, commercialized microbial pesticides based on entomopathogenic fungi largely occupy niche markets. A variety of molecular tools and technologies have recently allowed reclassification of numerous species based on phylogeny, as well as matching anamorphs (asexual forms) and teleomorphs (sexual forms) of several entomopathogenic taxa in the Phylum Ascomycota. Although these fungi have been traditionally regarded exclusively as pathogens of arthropods, recent studies have demonstrated that they occupy a great diversity of ecological niches. Entomopathogenic fungi are now known to be plant endophytes, plant disease antagonists, rhizosphere colonizers, and plant growth promoters. These newly understood attributes provide possibilities to use fungi in multiple roles. In addition to arthropod pest control, some fungal species could simultaneously suppress plant pathogens and plant parasitic nematodes as well as promote plant growth. A greater understanding of fungal ecology is needed to define their roles in nature and evaluate their limitations in biological control. More efficient mass production, formulation and delivery systems must be devised to supply an ever increasing market. More testing under field conditions is required to identify effects of biotic and abiotic factors on efficacy and persistence. Lastly, greater attention must be paid to their use within integrated pest management programs; in particular, strategies that incorporate fungi in combination with arthropod predators and parasitoids need to be defined to ensure compatibility and maximize efficacy. Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are potent MCAs. Substantial progress in research and application of EPNs has been made in the past decade. The number of target pests shown to be susceptible to EPNs has continued to increase. Advancements in this regard primarily have been made in soil habitats where EPNs are shielded from environmental extremes, but progress has also been made in use of nematodes in above-ground habitats owing to the development of improved protective formulations. Progress has also resulted from advancements in nematode production technology using both in vivo and in vitro systems; novel application methods such as distribution of infected host cadavers; and nematode strain improvement via enhancement and stabilization of beneficial traits. Innovative research has also yielded insights into the fundamentals of EPN biology including major advances in genomics, nematode-bacterial symbiont interactions, ecological relationships, and foraging behavior. Additional research is needed to leverage these basic findings toward direct improvements in microbial control

    MTG16 regulates colonic epithelial differentiation, colitis, and tumorigenesis by repressing E protein transcription factors

    Get PDF
    Aberrant epithelial differentiation and regeneration contribute to colon pathologies, including inflammatory bowel disease (iBD) and colitis-associated cancer (CAC). Myeloid translocation gene 16 (MTG16, also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 deficiency in mice exacerbates colitis and increases tumor burden in CAC, though the underlying mechanisms remain unclear. Here, we identified MTG16 as a central mediator of epithelial differentiation, promoting goblet and restraining enteroendocrine cell development in homeostasis and enabling regeneration following dextran sulfate sodium-induced (DSS-induced) colitis. Transcriptomic analyses implicated increased Ephrussi box-binding transcription factor (E protein) activity in MTG16-deficient colon crypts. Using a mouse model with a point mutation that attenuates MTG16:E protein interactions (Mtg16(P20ST)), we showed that MTG16 exerts control over colonic epithelial differentiation and regeneration by repressing E protein-mediated transcription. Mimicking murine colitis, MTG16 expression was increased in biopsies from patients with active IBD compared with unaffected controls. Finally, uncoupling MTG16:E protein interactions partially phenocopied the enhanced tumorigenicity of Mtg16(-/)(-) colon in the azoxymethane/DSS-induced model of CAC, indicating that MTG16 protects from tumorigenesis through additional mechanisms. Collectively, our results demonstrate that MTG16, via its repression of E protein targets. is a key regulator of cell fate decisions during colon homeostasis, colitis, and cancer.Peer reviewe

    Enhanced TH17 responses in patients with IL10 receptor deficiency and infantile-onset IBD

    Get PDF
    Background IL10 receptor (IL10R) deficiency causes severe infantile-onset IBD. Intact IL10R-dependent signals have been shown to be important for innate and adaptive immune cell function in mice. We have previously reported a key role of IL10 is the generation and function of human anti-inflammatory macrophages. Independent of innate immune cell defects, the aim of the current study was to determine the role of IL10R signaling in regulating human CD4+ T cell function. Methods Peripheral blood mononuclear cells and intestinal biopsies cells were collected from IL10/IL10R-deficient patients and controls. Frequencies of CD4+ T cell subsets, naïve T cell proliferation, regulatory T cell (Treg)-mediated suppression and Treg and TH17 generation were determined by flow cytometry. Transcriptional profiling was performed by NanoString and quantitative real-time PCR. RNA in situ hybridization was used to determine the quantities of various transcripts in intestinal mucosa. Results Analysis of 16 IL10- and IL10R-deficient patients demonstrated similar frequencies of peripheral blood and intestinal Tregs, compared to control subjects. In addition, in vitro Treg suppression of CD4+ T cell proliferation and generation of Treg were not dependent on IL10R signaling. However, IL10R-deficient T naïve cells exhibited significantly higher proliferative capacity, a strong TH17 signature and an increase in polarization towards TH17 cells, compared to controls. Moreover, the frequency of TH17 cells was increased in the colon and ileum of IL10R-deficient patients. Finally, we show that stimulation of IL10R-deficient Tregs in the presence of IL1 leads to enhanced production of IL17A. Conclusions IL10R signaling regulates TH17 polarization and T cell proliferation in humans, but is not required for the generation and in vitro suppression of Tregs. Therapies targeting the TH17 axis might be beneficial for IL10- and IL10R-deficient patients as a bridge to allogeneic hematopoietic stem cell transplantation

    A synthesis and subgroup analysis of the eosinophilic esophagitis tissue transcriptome

    Get PDF
    BackgroundEosinophilic esophagitis (EoE) is a chronic immune mediated inflammatory disorder of the esophagus. It is still unknown why children and adults present differently, and there is little evidence about why it is more common in men than women.ObjectiveOur aim was to synthesize published and unpublished esophageal bulk RNA-sequencing (RNA-seq) data to gain novel insights into the pathobiology of EoE and examine the differences in EoE transcriptome by sex and age group.MethodsEsophageal bulk RNA-seq data from 5 published and 2 unpublished studies resulting in 137 subjects (EoE: N = 76; controls: N = 61) were analyzed. For overall analysis, combined RNA-seq data of patients with EoE were compared with those of controls and subgroup analysis was conducted in patients with EoE by age of the patient (children [ResultsOverall analysis identified dysregulation of new genes in EoE compared with controls. IPA revealed that EoE is characterized by a mixed inflammatory response compared with controls. Cell-type analysis showed that cell composition varied with age: children had more mast cells, whereas adults had more macrophages. Finally, gene-set enrichment analysis and IPA revealed pathways that were differentially regulated in adults versus children and male versus female patients with EoE.ConclusionsUsing a unique approach to analyze bulk RNA-seq data, we found that EoE is characterized by a mixed inflammatory response, and the EoE transcriptome may be influenced by age and sex. These findings enhance insights into the molecular mechanisms of EoE.</p

    Genetic Architecture of Soybean Yield and Agronomic Traits

    Get PDF
    Soybean is the world’s leading source of vegetable protein and demand for its seed continues to grow. Breeders have successfully increased soybean yield, but the genetic architecture of yield and key agronomic traits is poorly understood. We developed a 40-mating soybean nested association mapping (NAM) population of 5,600 inbred lines that were characterized by single nucleotide polymorphism (SNP) markers and six agronomic traits in field trials in 22 environments. Analysis of the yield, agronomic, and SNP data revealed 23 significant marker-trait associations for yield, 19 for maturity, 15 for plant height, 17 for plant lodging, and 29 for seed mass. A higher frequency of estimated positive yield alleles was evident from elite founder parents than from exotic founders, although unique desirable alleles from the exotic group were identified, demonstrating the value of expanding the genetic base of US soybean breeding

    Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge

    Get PDF
    BACKGROUND: The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. METHODOLOGY/FINDINGS: Exposure of midges to 'dry' conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT(50) value for strain V275 was 1.42 days compared to 2.21-3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (10(8)-10(11) conidia m(-2)) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to 'dry' conidia and 'wet' conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. 'Dry' conidia were more effective than 'wet' conidia, causing 100% mortality after 5 days. CONCLUSION/SIGNIFICANCE: This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of 'dry' conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges thus reducing the incidence of disease

    A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared.</p> <p>Methods</p> <p>Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes.</p> <p>Results</p> <p>K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time.</p> <p>Conclusions</p> <p>K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers with accurate effective spore concentrations. The mosquito bioassay was suitable for evaluating fungal infectivity and virulence, allowing optimizations of spore dose and exposure time. Use of this standardized application method will help achieve reliable results that are exchangeable between different laboratories.</p
    corecore