2,172 research outputs found
Two Cases of Primary Ectopic Ovarian Pregnancy
Primary ovarian pregnancy is one of the rarest varieties of ectopic pregnancies. Patients frequently present with abdominal pain and menstrual irregularities. Intrauterine devices have evolved as probable risk factors. Preoperative diagnosis is challenging but transvaginal sonography has often been helpful. A diagnostic delay may lead to rupture, secondary implantation or operative difficulties. Therefore, awareness of this rare condition is important in reducing the associated risks. Here, we report two cases of primary ovarian pregnancies presenting with acute abdominal pain. Transabdominal ultrasonography failed to hint at ovarian pregnancy in one, while transvaginal sonography aided in the correct diagnosis of the other. Both cases were confirmed by histopathological examinations and were successfully managed by surgery
Vacuum state truncation via the quantum Zeno effect
In the context of quantum state engineering we analyze the effect of
observation on nonlinear optical -photon Fock state generation. We show that
it is possible to truncate the vacuum component from an arbitrary photon number
superposition without modifying its remaining parts. In the course of the full
dynamical analysis of the effect of observation, it is also found that the Zeno
and the anti-Zeno effects repeat periodically. We discuss the close
relationship between vacuum state truncation and so-called "interaction-free"
measurement.Comment: 4 pages, 2 figures, LaTeX; TeX errors fixe
Hierarchy of the Selberg zeta functions
We introduce a Selberg type zeta function of two variables which interpolates
several higher Selberg zeta functions. The analytic continuation, the
functional equation and the determinant expression of this function via the
Laplacian on a Riemann surface are obtained.Comment: 14 page
Structural, elastic and thermal properties of cementite (FeC) calculated using Modified Embedded Atom Method
Structural, elastic and thermal properties of cementite (FeC) were
studied using a Modified Embedded Atom Method (MEAM) potential for iron-carbon
(Fe-C) alloys. Previously developed Fe and C single element potentials were
used to develop an Fe-C alloy MEAM potential, using a statistically-based
optimization scheme to reproduce structural and elastic properties of
cementite, the interstitial energies of C in bcc Fe as well as heat of
formation of Fe-C alloys in L and B structures. The stability of
cementite was investigated by molecular dynamics simulations at high
temperatures. The nine single crystal elastic constants for cementite were
obtained by computing total energies for strained cells. Polycrystalline
elastic moduli for cementite were calculated from the single crystal elastic
constants of cementite. The formation energies of (001), (010), and (100)
surfaces of cementite were also calculated. The melting temperature and the
variation of specific heat and volume with respect to temperature were
investigated by performing a two-phase (solid/liquid) molecular dynamics
simulation of cementite. The predictions of the potential are in good agreement
with first-principles calculations and experiments.Comment: 12 pages, 9 figure
The effect of Fe atoms on the adsorption of a W atom on W(100) surface
We report a first-principles calculation that models the effect of iron (Fe)
atoms on the adsorption of a tungsten (W) atom on W(100) surfaces. The
adsorption of a W atom on a clean W(100) surface is compared with that of a W
atom on a W(100) surface covered with a monolayer of Fe atoms. The total energy
of the system is computed as the function of the height of the W adatom. Our
result shows that the W atom first adsorbs on top of the Fe monolayer. Then the
W atom can replace one of the Fe atoms through a path with a moderate energy
barrier and reduce its energy further. This intermediate site makes the
adsorption (and desorption) of W atoms a two-step process in the presence of Fe
atoms and lowers the overall adsorption energy by nearly 2.4 eV. The Fe atoms
also provide a surface for W atoms to adsorb facilitating the diffusion of W
atoms. The combination of these two effects result in a much more efficient
desorption and diffusion of W atoms in the presence of Fe atoms. Our result
provides a fundamental mechanism that can explain the activated sintering of
tungsten by Fe atoms.Comment: 9 pages, 2 figure
Modified embedded-atom method interatomic potentials for the Mg-Al alloy system
We developed new modified embedded-atom method (MEAM) interatomic potentials
for the Mg-Al alloy system using a first-principles method based on density
functional theory (DFT). The materials parameters, such as the cohesive energy,
equilibrium atomic volume, and bulk modulus, were used to determine the MEAM
parameters. Face-centered cubic, hexagonal close packed, and cubic rock salt
structures were used as the reference structures for Al, Mg, and MgAl,
respectively. The applicability of the new MEAM potentials to atomistic
simulations for investigating Mg-Al alloys was demonstrated by performing
simulations on Mg and Al atoms in a variety of geometries. The new MEAM
potentials were used to calculate the adsorption energies of Al and Mg atoms on
Al (111) and Mg (0001) surfaces. The formation energies and geometries of
various point defects, such as vacancies, interstitial defects and
substitutional defects, were also calculated. We found that the new MEAM
potentials give a better overall agreement with DFT calculations and
experiments when compared against the previously published MEAM potentials.Comment: Fixed a referenc
Preroughening, Diffusion, and Growth of An FCC(111) Surface
Preroughening of close-packed fcc(111) surfaces, found in rare gas solids, is
an interesting, but poorly characterized phase transition. We introduce a
restricted solid-on-solid model, named FCSOS, which describes it. Using mostly
Monte Carlo, we study both statics, including critical behavior and scattering
properties, and dynamics, including surface diffusion and growth. In antiphase
scattering, it is shown that preroughening will generally show up at most as a
dip. Surface growth is predicted to be continuous at preroughening, where
surface self-diffusion should also drop. The physical mechanism leading to
preroughening on rare gas surfaces is analysed, and identified in the step-step
elastic repulsion.Comment: Revtex + uuencoded figures, to appear in Physical Review Letter
Microlensing Detections of Planets in Binary Stellar Systems
We demonstrate that microlensing can be used for detecting planets in binary
stellar systems. This is possible because in the geometry of planetary binary
systems where the planet orbits one of the binary component and the other
binary star is located at a large distance, both planet and secondary companion
produce perturbations at a common region around the planet-hosting binary star
and thus the signatures of both planet and binary companion can be detected in
the light curves of high-magnification lensing events. We find that identifying
planets in binary systems is optimized when the secondary is located in a
certain range which depends on the type of the planet. The proposed method can
detect planets with masses down to one tenth of the Jupiter mass in binaries
with separations <~ 100 AU. These ranges of planet mass and binary separation
are not covered by other methods and thus microlensing would be able to make
the planetary binary sample richer.Comment: 5 pages, two figures in JPG forma
- …
