1,446 research outputs found
Decay and storage of multiparticle entangled states of atoms in collective thermostat
We derive a master equation describing the collective decay of two-level
atoms inside a single mode cavity in the dispersive limit. By considering
atomic decay in the collective thermostat, we found a decoherence-free subspace
of the multiparticle entangled states of the W-like class. We present a scheme
for writing and storing these states in collective thermostat
On Multiparticle Entanglement via Resonant Interaction between Light and atomic Ensembles
Multiparticle entangled states generated via interaction between narrow-band
light and an ensemble of identical two-level atoms are considered. Depending on
the initial photon statistics, correlation between atoms and photons can give
rise to entangled states of these systems. It is found that the state of any
pair of atoms interacting with weak single-mode squeezed light is inseparable
and robust against decay. Optical schemes for preparing entangled states of
atomic ensembles by projective measurement are described.Comment: 11 pages, 1 figure, revtex
Density of states and zero Landau level probed through capacitance of graphene
We report capacitors in which a finite electronic compressibility of graphene
dominates the electrostatics, resulting in pronounced changes in capacitance as
a function of magnetic field and carrier concentration. The capacitance
measurements have allowed us to accurately map the density of states D, and
compare it against theoretical predictions. Landau oscillations in D are robust
and zero Landau level (LL) can easily be seen at room temperature in moderate
fields. The broadening of LLs is strongly affected by charge inhomogeneity that
leads to zero LL being broader than other levels
- …
