129 research outputs found

    Quantum dynamics of impurities in a 1D Bose gas

    Full text link
    Using a species-selective dipole potential, we create initially localized impurities and investigate their interactions with a majority species of bosonic atoms in a one-dimensional configuration during expansion. We find an interaction-dependent amplitude reduction of the oscillation of the impurities' size with no measurable frequency shift, and study it as a function of the interaction strength. We discuss possible theoretical interpretations of the data. We compare, in particular, with a polaronic mass shift model derived following Feynman variational approach.Comment: 7 pages, 6 figure

    Multimode Dynamics and Emergence of a Characteristic Length Scale in a One-Dimensional Quantum System

    Get PDF
    We study the nonequilibrium dynamics of a coherently split one-dimensional Bose gas by measuring the full probability distribution functions of matter-wave interference. Observing the system on different length scales allows us to probe the dynamics of excitations on different energy scales, revealing two distinct length-scale-dependent regimes of relaxation. We measure the crossover length scale separating these two regimes and identify it with the prethermalized phase-correlation length of the system. Our approach enables a direct observation of the multimode dynamics characterizing one-dimensional quantum systems.Physic

    The dynamics and prethermalization of one dimensional quantum systems probed through the full distributions of quantum noise

    Get PDF
    Quantum noise correlations have been employed in several areas in physics including condensed matter, quantum optics and ultracold atom to reveal non-classical states of the systems. So far, such analysis mostly focused on systems in equilibrium. In this paper, we show that quantum noise is also a useful tool to characterize and study the non-equilibrium dynamics of one dimensional system. We consider the Ramsey sequence of one dimensional, two-component bosons, and obtain simple, analytical expressions of time evolutions of the full distribution functions for this strongly-correlated, many-body system. The analysis can also be directly applied to the evolution of interference patterns between two one dimensional quasi-condensates created from a single condensate through splitting. Using the tools developed in this paper, we demonstrate that one dimensional dynamics in these systems exhibits the phenomenon known as "prethermalization", where the observables of {\it non-equilibrium}, long-time transient states become indistinguishable from those of thermal {\it equilibrium} states.Comment: 22 pages, 11 figures+appendi

    Prethermalization Revealed by the Relaxation Dynamics of Full Distribution Functions

    Get PDF
    We detail the experimental observation of the non-equilibrium many-body phenomenon prethermalization. We study the dynamics of a rapidly and coherently split one-dimensional Bose gas. An analysis based on the use of full quantum mechanical probability distributions of matter wave interference contrast reveals that the system evolves toward a quasi-steady state. This state, which can be characterized by an effective temperature, is not the final thermal equilibrium state. We compare the evolution of the system to an integrable Tomonaga–Luttinger liquid model, and show that the system dephases to a prethermalized state rather than undergoing thermalization toward a final thermal equilibrium state.Physic

    Writing Rock Stars: An After-School Community Partnership in Childhood Literacy

    Get PDF
    This study explains the development, implementation, and preliminary findings of an after-school pilot writing program that drew upon a peer collaborative model and a community literacy perspective. Preliminary findings suggest important benefits of this partnership for young children, parents, and the surrounding community

    Many-body localization and thermalization in the full probability distribution function of observables

    Get PDF
    We investigate the relation between thermalization following a quantum quench and many-body localization in quasiparticle space in terms of the long-time full distribution function of physical observables. In particular, expanding on our recent work [E. Canovi {\em et al.}, Phys. Rev. B {\bf 83}, 094431 (2011)], we focus on the long-time behavior of an integrable XXZ chain subject to an integrability-breaking perturbation. After a characterization of the breaking of integrability and the associated localization/delocalization transition using the level spacing statistics and the properties of the eigenstates, we study the effect of integrability-breaking on the asymptotic state after a quantum quench of the anisotropy parameter, looking at the behavior of the full probability distribution of the transverse and longitudinal magnetization of a subsystem. We compare the resulting distributions with those obtained in equilibrium at an effective temperature set by the initial energy. We find that, while the long time distribution functions appear to always agree {\it qualitatively} with the equilibrium ones, {\it quantitative} agreement is obtained only when integrability is fully broken and the relevant eigenstates are diffusive in quasi-particle space.Comment: 18 pages, 11 figure

    Many-body localization in a quantum simulator with programmable random disorder

    Get PDF
    When a system thermalizes it loses all local memory of its initial conditions. This is a general feature of open systems and is well described by equilibrium statistical mechanics. Even within a closed (or reversible) quantum system, where unitary time evolution retains all information about its initial state, subsystems can still thermalize using the rest of the system as an effective heat bath. Exceptions to quantum thermalization have been predicted and observed, but typically require inherent symmetries or noninteracting particles in the presence of static disorder. The prediction of many-body localization (MBL), in which disordered quantum systems can fail to thermalize in spite of strong interactions and high excitation energy, was therefore surprising and has attracted considerable theoretical attention. Here we experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmably random disorder to ten spins initialized far from equilibrium. We observe the essential signatures of MBL: memory retention of the initial state, a Poissonian distribution of energy level spacings, and entanglement growth in the system at long times. Our platform can be scaled to higher numbers of spins, where detailed modeling of MBL becomes impossible due to the complexity of representing such entangled quantum states. Moreover, the high degree of control in our experiment may guide the use of MBL states as potential quantum memories in naturally disordered quantum systems.Comment: 9 pages, 9 figure

    Zamolodchikov-Faddeev Algebra and Quantum Quenches in Integrable Field Theories

    Get PDF
    We analyze quantum quenches in integrable models and in particular the determination of the initial state in the basis of eigenstates of the post-quench hamiltonian. This leads us to consider the set of transformations of creation and annihilation operators that respect the Zamolodchikov-Faddeev algebra satisfied by integrable models. We establish that the Bogoliubov transformations hold only in the case of quantum quenches in free theories. In the most general case of interacting theories, we identify two classes of transformations. The first class induces a change in the S-matrix of the theory but not of its ground state, whereas the second class results in a "dressing" of the operators. As examples of our approach we consider the transformations associated with a change of the interaction in the Sinh-Gordon and the Lieb-Liniger model.Comment: v2: published version (typos corrected

    Ballistic transport and boundary resistances in inhomogeneous quantum spin chains

    Get PDF
    Transport phenomena are central to physics, and transport in the many-body and fully-quantum regime is attracting an increasing amount of attention. It has been recently revealed that some quantum spin chains support ballistic transport of excitations at all energies. However, when joining two semi-infinite ballistic parts, such as the XX and XXZ spin-1/2 models, our understanding suddenly becomes less established. Employing a matrix-product-state ansatz of the wavefunction, we study the relaxation dynamics in this latter case. Here we show that it takes place inside a light cone, within which two qualitatively different regions coexist: an inner one with a strong tendency towards thermalization, and an outer one supporting ballistic transport. We comment on the possibility that even at infinite time the system supports stationary currents and displays a non-zero Kapitza boundary resistance. Our study paves the way to the analysis of the interplay between transport, integrability, and local defects

    Universal prethermal dynamics of Bose gases quenched to unitarity

    Get PDF
    Understanding strongly correlated phases of matter, such as the quark–gluon plasma and neutron stars, and in particular the dynamics of such systems, for example, following a Hamiltonian quench (a sudden change in some Hamiltonian parameter, such as the strength of interparticle interactions) is a fundamental challenge in modern physics. Ultracold atomic gases are excellent quantum simulators for these problems, owing to their tunable interparticle interactions and experimentally resolvable intrinsic timescales. In particular, they provide access to the unitary regime, in which the interactions are as strong as allowed by quantum mechanics. This regime has been extensively studied in Fermi gases1,2. The less-explored unitary Bose gases3,4,5,6,7,8,9,10,11 offer possibilities12 such as universal physics controlled solely by the gas density13,14 and new forms of superfluidity15,16,17. Here, through momentum- and time-resolved studies, we explore degenerate and thermal homogeneous Bose gases quenched to unitarity. In degenerate samples, we observe universal post-quench dynamics in agreement with the emergence of a prethermal state18,19,20,21,22,23,24 with a universal non-zero condensed fraction22,24. In thermal gases, the dynamic and thermodynamic properties generally depend on the gas density and the temperature, but we find that they can still be expressed in terms of universal dimensionless functions. Surprisingly, we find that the total quench-induced correlation energy is independent of the gas temperature. These measurements provide quantitative benchmarks and challenges for the theory of unitary Bose gases
    corecore