2,054 research outputs found
The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria
Components of the death receptors-mediated pathways like caspase-8 have been identified in complexes at intracellular membranes to spatially restrict the processing of local targets. In this study, we report that the long isoform of the cellular FLICE-inhibitory protein (c-FLIPL), a well- known inhibitor of the extrinsic cell death initiator caspase-8, localizes at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs). ER morphology was disrupted and ER Ca2+-release as well as ER-mitochondria tethering were decreased in c-FLIP-/- mouse embryonic fibroblasts (MEFs). Mechanistically, c-FLIP ablation resulted in enhanced basal caspase-8 activation and in caspase-mediated processing of the ER-shaping protein reticulon-4 (RTN4) that was corrected by re-introduction of c-FLIPL and caspase inhibition, resulting in the recovery of a normal ER morphology and ER-mitochondria juxtaposition. Thus, the caspase-8 inhibitor c-FLIPL emerges as a component of the MAMs signaling platforms, where caspases appear to regulate ER morphology and ER-mitochondria crosstalk by impinging on ER-shaping proteins like the RTN4
Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes
MRI sensing based on the displacement of paramagnetic ions from chelated complexes
We introduce a mechanism for ion sensing by MRI in which analytes compete with paramagnetic ions for binding to polydentate chelating agents. Displacement of the paramagnetic ions results in alteration of solvent interaction parameters and consequent changes in relaxivity and MRI contrast. The MRI changes can be tuned by the choice of chelator. As an example, we show that calcium-dependent displacement of Mn[superscript 2+] ions bound to EGTA and BAPTA results in a T[subscript 1]-weighted MRI signal increase, whereas displacement from calmodulin results in a signal decrease. The changes are ion selective and can be explained using relaxivity theory. The ratio of T[subscript 2] to T[subscript 1] relaxivity is also calcium-dependent, indicating the feasibility of “ratiometric” analyte detection, independent of the probe concentration. Measurement of paramagnetic ion displacement effects could be used to determine analyte ion concentrations with spatial resolution in opaque specimens.National Institutes of Health (U.S.) (grant DP2-OD2441)National Institutes of Health (U.S.) (grant R01-GM65519)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) Progra
Opera and poison : a secret and enjoyable approach to teaching and learning chemistry
The storyline of operas, with historical or fictional characters, often include potions and poisons. This has prompted a study of the chemistry behind some operatic plots. The results were originally presented as a lecture given at the University of Minho in
Portugal, within the context of the International Year of Chemistry.
The same lecture was subsequently repeated at other universities as an invited lecture for science students and in public theaters for wider audiences. The lecture included a multimedia and interactive
content that allowed the audience to listen to arias and to watch video clips with selected scenes extracted from operas. The present article, based on the lecture, demonstrates how chemistry and opera
can be related and may also serve as a source of motivation and inspiration for chemistry teachers looking for alternative pedagogical approaches. Moreover, the lecture constitutes a vehicle that transports chemistry knowledge to wider audiences through examples of everyday molecules, with particular emphasis on natural products.The author is pleased to express his gratitude to Jorge Calado and Michael John Smith for useful discussions. The author also thanks the reviewers of the manuscript for their helpful comments and suggestions. Thanks are due to the Foundation for Science and Technology (FCT,Portugal), QREN and FEDER/EU for financial support through the research centers, CQ/UM PEst-C/QUI/UI0686/2011. Ciencia Viva, Portugal, is also acknowledged for financial support of the activities organized by the University of Minho during the International Year of Chemistry. The author also expresses his gratitude to Ana Paula Ferreira and Andre Cunha Leal from RTP Antena 2 who contributed immensely to the popularization of the lecture on which this paper is based on
Glucagon-like peptide-1 and its class B G protein-coupled receptors: A long march to therapeutic successes
Theglucagon-likepeptide (GLP)-1receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secretedfromthreemajor tissues inhumans,enteroendocrine L cells in the distal intestine, a cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a twodomain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidicGLP-1R agonists have been hampered, small-moleculemodulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders
Recommended from our members
Discovery of novel GPVI receptor antagonists by structure-based repurposing.
Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug 'resistance', underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing
New Perspectives for Fisetin
Fisetin is a flavonol that shares distinct antioxidant properties with a plethora of other plant polyphenols. Additionally, it exhibits a specific biological activity of considerable interest as regards the protection of functional macromolecules against stress which results in the sustenance of normal cells cytoprotection. Moreover, it shows potential as an anti-inflammatory, chemopreventive, chemotherapeutic and recently also senotherapeutic agent. In view of its prospective applications in healthcare and likely demand for fisetin, methods for its preparation and their suitability for pharmaceutical use are discussed herein
Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells
The mechanisms of Pb(II) toxicity have been studied in human red blood cells using confocal microscopy, immunolabeling, fluorescence-activated cell sorting and atomic force microscopy. The process follows a sequence of events, starting with calcium entry, followed by potassium release, morphological change, generation of ceramide, lipid flip-flop and finally cell lysis. Clotrimazole blocks potassium channels and the whole process is inhibited. Immunolabeling reveals the generation of ceramide-enriched domains linked to a cell morphological change, while the use of a neutral sphingomyelinase inhibitor greatly delays the process after the morphological change, and lipid flip-flop is significantly reduced. These facts point to three major checkpoints in the process: first the upstream exchange of calcium and potassium, then ceramide domain formation, and finally the downstream scramblase activation necessary for cell lysis. In addition, partial non-cytotoxic cholesterol depletion of red blood cells accelerates the process as the morphological change occurs faster. Cholesterol could have a role in modulating the properties of the ceramide-enriched domains. This work is relevant in the context of cell death, heavy metal toxicity and sphingolipid signaling.AGA was a predoctoral student supported by the Basque Government and later by the University of the Basque Country (UPV/EHU). This work was also supported in part by grants from the Spanish Government (FEDER/MINECO BFU 2015-66306-P to F.M.G. and A.A.) and the Basque Government (IT849-13 to F.M.G. and IT838-13 to A.A.), and by the Swiss National Science Foundation
Ca2+ monitoring in Plasmodium falciparum using the yellow cameleon-Nano biosensor
Calcium (Ca2+)-mediated signaling is a conserved mechanism in eukaryotes, including the human malaria parasite, Plasmodium falciparum. Due to its small size (300?nM). We determined that the mammalian SERCA inhibitor thapsigargin and antimalarial dihydroartemisinin did not perturb SERCA activity. The change of the cytosolic Ca2+ level in P. falciparum was additionally detectable by flow cytometry. Thus, we propose that the developed YC-Nano-based system is useful to study Ca2+ signaling in P. falciparum and is applicable for drug screening.We are grateful to Japanese Red Cross Blood Society for providing human RBC and plasma. We also thank Tanaka R, Ogoshi (Sakura) M and Matsumoto N for technical assistance and Templeton TJ for critical reading. This study was conducted at the Joint Usage / Research Center on Tropical Disease, Institute of Tropical Medicine, Nagasaki University, Japan. KP was a Tokyo Biochemical Research Foundation (TBRF, http://www.tokyobrf.or.jp) post-doctoral fellow and PEF was a Japanese Society of Promotion Sciences (JSPS) post-doctoral fellow. This work was supported in part by the TBRF (K.P.), JSPS (P.E.F.), Takeda Science Foundation (K.Y.), Grants-in-Aids for Scientific Research 24590509 (K.Y.), 22390079 (O.K.), and for Scientific Research on Innovative Areas 23117008 (O.K.), MEXT, Japan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …
