611 research outputs found
Metachronal wave and hydrodynamic interaction for deterministic switching rowers
We employ a model system, called rowers, as a generic physical framework to
define the problem of the coordinated motion of cilia (the metachronal wave) as
a far from equilibrium process. Rowers are active (two-state) oscillators
interacting solely through forces of hydrodynamic origin. In this work, we
consider the case of fully deterministic dynamics, find analytical solutions of
the equation of motion in the long wavelength (continuum) limit, and
investigate numerically the short wavelength limit. We prove the existence of
metachronal waves below a characteristic wavelength. Such waves are unstable
and become stable only if the sign of the coupling is reversed. We also find
that with normal hydrodynamic interaction the metachronal pattern has the form
of stable trains of traveling wave packets sustained by the onset of
anti-coordinated beating of consecutive rowers.Comment: 11 pages, 7 figure
Superconductivity in ropes of carbon nanotubes
Recent experimental and theoretical results on intrinsic superconductivity in
ropes of single-wall carbon nanotubes are reviewed and compared. We find strong
experimental evidence for superconductivity when the distance between the
normal electrodes is large enough. This indicates the presence of attractive
phonon-mediated interactions in carbon nanotubes, which can even overcome the
repulsive Coulomb interactions. The effective low-energy theory of rope
superconductivity explains the experimental results on the
temperature-dependent resistance below the transition temperature in terms of
quantum phase slips. Quantitative agreement with only one fit parameter can be
obtained. Nanotube ropes thus represent superconductors in an extreme 1D limit
never explored before.Comment: 19 pages, 9 figures, to appear in special issue of Sol. State Com
Very low shot noise in carbon nanotubes
We have performed noise measurements on suspended ropes of single wall carbon
nanotubes (SWNT) between 1 and 300 K for different values of dc current through
the ropes. We find that the shot noise is suppressed by more than a factor 100
compared to the full shot noise 2eI. We have also measured an individual SWNT
and found a level of noise which is smaller than the minimum expected. Another
finding is the very low level of 1/f noise, which is significantly lower than
previous observations. We propose two possible interpretations for this strong
shot noise reduction: i) Transport within a rope takes place through a few
nearly ballistic tubes within a rope and possibly involves non integer
effective charges. ii) A substantial fraction of the tubes conduct with a
strong reduction of effective charge (by more than a factor 50).Comment: Submitted to Eur. Phys. J. B (Jan. 2002) Higher resolution pictures
are posted on http://www.lps.u-psud.fr/Collectif/gr_07/publications.htm
Superconductivity in Ropes of Single-Walled Carbon Nanotubes
We report measurements on ropes of Single Walled Carbon Nanotubes (SWNT) in
low-resistance contact to non-superconducting (normal) metallic pads, at low
voltage and at temperatures down to 70 mK. In one sample, we find a two order
of magnitude resistance drop below 0.55 K, which is destroyed by a magnetic
field of the order of 1T, or by a d.c. current greater than 2.5 microA. These
features strongly suggest the existence of superconductivity in ropes of SWNT.Comment: Accepted for publication in Phys. Rev. Let
Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions
We have investigated low-temperature transport properties of two-dimensional
arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has
been found that in two-dimensional arrays of SNS junctions (i) a change in the
energy spectrum within an interval of the order of the Thouless energy is
observed even when the thermal broadening far exceeds the Thouless energy for a
single SNS junction; (ii) the manifestation of the subharmonic energy gap
structure (SGS) with high harmonic numbers is possible even if the energy
relaxation length is smaller than that required for the realization of a
multiple Andreev reflection in a single SNS junction. These results point to
the synchronization of a great number of SNS junctions. A mechanism of the SGS
origin in two-dimensional arrays of SNS junctions, involving the processes of
conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure
Bubbles, clusters and denaturation in genomic DNA: modeling, parametrization, efficient computation
The paper uses mesoscopic, non-linear lattice dynamics based
(Peyrard-Bishop-Dauxois, PBD) modeling to describe thermal properties of DNA
below and near the denaturation temperature. Computationally efficient notation
is introduced for the relevant statistical mechanics. Computed melting profiles
of long and short heterogeneous sequences are presented, using a recently
introduced reparametrization of the PBD model, and critically discussed. The
statistics of extended open bubbles and bound clusters is formulated and
results are presented for selected examples.Comment: to appear in a special issue of the Journal of Nonlinear Mathematical
Physics (ed. G. Gaeta
Density of States and Energy Gap in Andreev Billiards
We present numerical results for the local density of states in semiclassical
Andreev billiards. We show that the energy gap near the Fermi energy develops
in a chaotic billiard. Using the same method no gap is found in similar square
and circular billiards.Comment: 9 pages, 6 Postscript figure
Arbeitslosigkeit und soziale Sicherung
Die anhaltend hohe Arbeitslosigkeit hat verstärkt zu Diskussionen geführt, ob das Steuer-Transfer-System hierfür mitverantwortlich sei. Dabei wurde insbesondere auf die sehr hohe implizite Grenzbelastung im untersten Einkommensbereich hingewiesen. Als Alternativen wurden eine negative Einkommensteuer, negative Grenzsteuersätze oder Arbeitsverpflichtungen für Transferempfänger vorgeschlagen. Die Arbeit würdigt diese Instrumente analytisch und zeigt, dass negative Grenzsteuersätze oder Arbeitsverpflichtungen nicht die erhofften Wohlfahrtswirkungen haben
Density of states in SF bilayers with arbitrary strength of magnetic scattering
We developed the self-consistent method for the calculation of the density of
states in the SF bilayers. It based on the quasi-classical Usadel
equations and takes into account the suppression of superconductivity in the S
layer due to the proximity effect with the F metal, as well as existing
mechanisms of the spin dependent electron scattering. We demonstrate that the
increase of the spin orbit or spin flip electron scattering rates results in
completely different transformations of at the free F layer
interface. The developed formalism has been applied for the interpretation of
the available experimental data.Comment: 5 pages, 8 figure
Fine Structure in Energy Spectra of Ultrasmall Au Nanoparticles
We have studied tunneling into individual Au nanoparticles of estimated
diameters 2-5 nm, at dilution refrigerator temperatures. The I-V curves
indicate resonant tunneling via discrete energy levels of the particle. Unlike
previously studied normal metal particles of Au and Al, in these samples we
find that the lowest energy tunneling resonances are split into clusters of
2-10 subresonances. Such effects appear to be increasingly important in smaller
grains, as might be expected from the larger characteristic energies.Comment: 1 pdf fil
- …
