3,833 research outputs found

    New Limits on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    We update the limit from the 90 GHz PIQUE ground-based polarimeter on the magnitude of any polarized anisotropy of the cosmic microwave radiation. With a second year of data, we have now limited both Q and U on a ring of 1 degree radius. The window functions are broad: for E-mode polarization, the effective l is = 191 +143 -132. We find that the E-mode signal can be no greater than 8.4 microK (95% CL), assuming no B-mode polarization. Limits on a possible B-mode signal are also presented.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    The significance of nitrogen fixation to new production during early summer in the Baltic Sea.

    Get PDF
    Rates of dinitrogen (N2) fixation and primary production were measured during two 9 day transect cruises in the Baltic proper in June–July of 1998 and 1999. Assuming that the early phase of the bloom of cyanobacteria lasted a month, total rates of N2 fixation contributed 15 mmol N m−2 (1998) and 33 mmol N m−2 (1999) to new production (sensu Dugdale and Goering, 1967). This constitutes 12–26% more new N than other annual estimates (mid July–mid October) from the same region. The between-station variability observed in both total N2 fixation and primary productivity greatly emphasizes the need for multiple stations and seasonal sampling strategies in biogeochemical studies of the Baltic Sea. The majority of new N from N2 fixation was contributed by filamentous cyanobacteria. On average, cyanobacterial cells >20 µm were able to supply a major part of their N requirements for growth by N2 fixation in both 1998 (73%) and 1999 (81%). The between-station variability was high however, and ranged from 28–150% of N needed to meet the rate of C incorporation by primary production. The molar C:N rate incorporation ratio (C:NRATE) in filamentous cyanobacterial cells was variable (range 7–28) and the average almost twice as high as the Redfield ratio (6.6) in both years. Since the molar C:N mass ratio (C:NMASS) in filamentous cyanobacterial cells was generally lower than C:NRATE at a number of stations, we suggest that the diazotrophs incorporated excess C on a short term basis (carbohydrate ballasting and buoyancy regulation), released nitrogen or utilized other regenerated sources of N nutrients. Measured rates of total N2 fixation contributed only a minor fraction of 13% (range 4–24) in 1998 and 18% (range 2–45) in 1999 to the amount of N needed for the community primary production. An average of 9 and 15% of total N2 fixation was found in cells <5 µm. Since cells <5 µm did not show any detectable rates of N2 fixation, the 15N-enrichment could be attributed to regenerated incorporation of dissolved organic N (DON) and ammonium generated from larger diazotroph cyanobacteria. Therefore, N excretion from filamentous cyanobacteria may significantly contribute to the pool of regenerated nutrients used by the non-diazotroph community in summer. Higher average concentrations of regenerated N (ammonium) coincided with higher rates of N2 fixation found during the 1999 transect and a higher level of 15N-enrichment in cells <5 µm. A variable but significant fraction of total N2 fixation (1–10%) could be attributed to diazotrophy in cells between 5–20 µm

    Breaking the Redshift Deadlock - I: Constraining the star formation history of galaxies with sub-millimetre photometric redshifts

    Full text link
    Future extragalactic sub-millimetre and millimetre surveys have the potential to provide a sensitive census of the level of obscured star formation in galaxies at all redshifts. While in general there is good agreement between the source counts from existing SCUBA (850um) and MAMBO (1.25mm) surveys of different depths and areas, it remains difficult to determine the redshift distribution and bolometric luminosities of the sub-millimetre and millimetre galaxy population. This is principally due to the ambiguity in identifying an individual sub-millimetre source with its optical, IR or radio counterpart which, in turn, prevents a confident measurement of the spectroscopic redshift. Additionally, the lack of data measuring the rest-frame FIR spectral peak of the sub-millimetre galaxies gives rise to poor constraints on their rest-frame FIR luminosities and star formation rates. In this paper we describe Monte-Carlo simulations of ground-based, balloon-borne and satellite sub-millimetre surveys that demonstrate how the rest-frame FIR-sub-millimetre spectral energy distributions (250-850um) can be used to derive photometric redshifts with an r.m.s accuracy of +/- 0.4 over the range 0 < z < 6. This opportunity to break the redshift deadlock will provide an estimate of the global star formation history for luminous optically-obscured galaxies [L(FIR) > 3 x 10^12 Lsun] with an accuracy of 20 per cent.Comment: 14 pages, 22 figures, submitted to MNRAS, replaced with accepted versio

    On the eigenproblems of PT-symmetric oscillators

    Full text link
    We consider the non-Hermitian Hamiltonian H= -\frac{d^2}{dx^2}+P(x^2)-(ix)^{2n+1} on the real line, where P(x) is a polynomial of degree at most n \geq 1 with all nonnegative real coefficients (possibly P\equiv 0). It is proved that the eigenvalues \lambda must be in the sector | arg \lambda | \leq \frac{\pi}{2n+3}. Also for the case H=-\frac{d^2}{dx^2}-(ix)^3, we establish a zero-free region of the eigenfunction u and its derivative u^\prime and we find some other interesting properties of eigenfunctions.Comment: 21pages, 9 figure

    Temperature inversion symmetry in the Casimir effect with an antiperiodic boundary condition

    Full text link
    We present explicitly another example of a temperature inversion symmetry in the Casimir effect for a nonsymmetric boundary condition. We also give an interpretation for our result.Comment: 4 page

    A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on the magnitude of any polarized anisotropy in the cosmic microwave background. The combination of the scan strategy and full width half maximum beam of 0.235 degrees gives broad window functions with average multipoles, l = 211+294-146 and l = 212+229-135 for the E- and B-mode window functions, respectively. A joint likelihood analysis yields simultaneous 95% confidence level flat band power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode angular power spectra, respectively. Assuming no B-modes, a 95% confidence limit of 10 microkelvin is placed on the amplitude of the E-mode angular power spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    CMB anisotropy predictions for a model of double inflation

    Full text link
    We consider a double-inflationary model with two massive scalar fields interacting only gravitationally in the context of a flat cold dark matter (CDM) Universe. The cosmic microwave background (CMB) temperature anisotropies produced in this theory are investigated in great details for a window of parameters where the density fluctuation power spectrum P(k) is in good agreement with observations. The first Doppler (``acoustic'') peak is a crucial test for this model as well as for other models. For the ``standard'' values of the cosmological parameters of CDM, our model is excluded if the height of the Doppler peak is sensibly higher than about three times the Sachs-Wolfe plateau.Comment: 12 pages LaTeX using revtex, to be published in Phys. Rev.
    corecore