820 research outputs found
Adaptation to different types of stress converge on mitochondrial metabolism
Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism
Efficient protein production by yeast requires global tuning of metabolism
The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular, altered energy metabolism resulting in reduced respiration and increased fermentation, as well as balancing of amino-acid biosynthesis and reduced thiamine biosynthesis seem to be particularly important. We confirm our findings by inverse engineering and physiological characterization and show that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion
Stories of Hell and Healing: Internet Users’ Construction of Benzodiazepine Distress and Withdrawal
Abstract
Benzodiazepines are a group of drugs used mainly as sedatives, hypnotics, antiepileptics, and muscle relaxants. Consumption is recommended for 2 to 4 weeks only, due to fast onset of dependency and potentially distressing withdrawal symptoms. Few peer-review studies have drawn on the user experiences and language to appreciate firsthand experiences of benzodiazepine withdrawal or discontinuation syndrome. We looked extensively at patient stories of benzodiazepine withdrawal and recovery on Internet support sites and YouTube. Our analysis indicated that users employ rich metaphors to portray the psychologically disturbing and protracted nature of their suffering. We identified seven major themes: hell and isolation, anxiety and depression, alienation, physical distress, anger and remorse, waves and windows, and healing and renewal. By posting success stories, ex-users make known that “healing” can be a long, unpredictable process, but distress does lessen, and recovery can happen
Interactions between Magnetic Nanowires and Living Cells : Uptake, Toxicity and Degradation
We report on the uptake, toxicity and degradation of magnetic nanowires by
NIH/3T3 mouse fibroblasts. Magnetic nanowires of diameters 200 nm and lengths
comprised between 1 {\mu}m and 40 {\mu}m are fabricated by controlled assembly
of iron oxide ({\gamma}-Fe2O3) nanoparticles. Using optical and electron
microscopy, we show that after 24 h incubation the wires are internalized by
the cells and located either in membrane-bound compartments or dispersed in the
cytosol. Using fluorescence microscopy, the membrane-bound compartments were
identified as late endosomal/lysosomal endosomes labeled with lysosomal
associated membrane protein (Lamp1). Toxicity assays evaluating the
mitochondrial activity, cell proliferation and production of reactive oxygen
species show that the wires do not display acute short-term (< 100 h) toxicity
towards the cells. Interestingly, the cells are able to degrade the wires and
to transform them into smaller aggregates, even in short time periods (days).
This degradation is likely to occur as a consequence of the internal structure
of the wires, which is that of a non-covalently bound aggregate. We anticipate
that this degradation should prevent long-term asbestos-like toxicity effects
related to high aspect ratio morphologies and that these wires represent a
promising class of nanomaterials for cell manipulation and microrheology.Comment: 21 pages 12 figure
Characteristics of Fibromyalgia Independently Predict Poorer Long‐Term Analgesic Outcomes Following Total Knee and Hip Arthroplasty
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111198/1/art39051.pd
Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain
Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole carbon source, and requires supplementation of C2 compounds to the medium in order to meet the requirement for cytosolic acetyl-CoA for biosynthesis of fatty acids and ergosterol. Results: In this study, a Pdc negative strain was adaptively evolved for improved growth in glucose medium via serial transfer, resulting in three independently evolved strains, which were able to grow in minimal medium containing glucose as the sole carbon source at the maximum specific rates of 0.138, 0.148, 0.141 h(-1), respectively. Several genetic changes were identified in the evolved Pdc negative strains by genomic DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase, and RPD3 encoding a histone deacetylase. Reverse engineering of the non-evolved Pdc negative strain through introduction of the MTH1(81D) allele restored its growth on glucose at a maximum specific rate of 0.053 h(-1) in minimal medium with 2% glucose, and the CIT1 deletion in the reverse engineered strain further increased the maximum specific growth rate to 0.069 h(-1). Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in order to ensure production of cytosolic acetyl-CoA in the Pdc negative strain
PCBs and dioxins/furans in attic dust collected near former PCB production and secondary copper facilities in Sauget, IL
AbstractSamples of settled attic dust from fourteen buildings located within two miles of the Solutia W.G. Krummrich and Cerro Flow Products facilities in Sauget, Illinois were analyzed for PCBs and dioxins/furans using HRGC/HRMS. The facilities released vast quantities of PCBs and dioxins/furans into the environment over many decades. The concentrations and homologues present in the samples of attic dust and in samples of soil collected by U.S. EPA demonstrate atmospheric transport of PCBs and dioxins/furans from these manufacturing sites and local dumps contaminated with these pollutants. The results demonstrate that attic dust is a useful metric for assessing historical exposure to atmospheric emissions
Sexual conflict maintains variation at an insecticide resistance locus
Background: The maintenance of genetic variation through sexually antagonistic selection is controversial, partly because specific sexually-antagonistic alleles have not been identified. The Drosophila DDT resistance allele (DDT-R) is an exception. This allele increases female fitness, but simultaneously decreases male fitness, and it has been suggested that this sexual antagonism could explain why polymorphism was maintained at the locus prior to DDT use. We tested this possibility using a genetic model and then used evolving fly populations to test model predictions. Results: Theory predicted that sexual antagonism is able to maintain genetic variation at this locus, hence explaining why DDT-R did not fix prior to DDT use despite increasing female fitness, and experimentally evolving fly populations verified theoretical predictions. Conclusions: This demonstrates that sexually antagonistic selection can maintain genetic variation and explains the DDT-R frequencies observed in nature
Superfund, Hedonics, and the Scales of Environmental Justice
Environmental justice (EJ) is prominent in environmental policy, yet EJ research is plagued by debates over methodological procedures. A well-established economic approach, the hedonic price method, can offer guidance on one contentious aspect of EJ research: the choice of the spatial unit of analysis. Environmental managers charged with preventing or remedying inequities grapple with these framing problems. This article reviews the theoretical and empirical literature on unit choice in EJ, as well as research employing hedonic pricing to assess the spatial extent of hazardous waste site impacts. The insights from hedonics are demonstrated in a series of EJ analyses for a national inventory of Superfund sites. First, as evidence of injustice exhibits substantial sensitivity to the choice of spatial unit, hedonics suggests some units conform better to Superfund impacts than others. Second, hedonic estimates for a particular site can inform the design of appropriate tests of environmental inequity for that site. Implications for policymakers and practitioners of EJ analyses are discussed
Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex
Citation: Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. Plos Pathogens, 12(1), 28. doi:10.1371/journal.ppat.1005404Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems
- …
