8 research outputs found
An Artificial Intelligence Approach Toward Food Spoilage Detection and Analysis
Aiming to increase the shelf life of food, researchers are moving toward new methodologies to maintain the quality of food as food grains are susceptible to spoilage due to precipitation, humidity, temperature, and a variety of other influences. As a result, efficient food spoilage tracking schemes are required to sustain food quality levels. We have designed a prototype to track food quality and to manage storage systems at home. Initially, we have employed a Convolutional Neural Network (CNN) model to detect the type of fruit and veggies. Then the proposed system monitors the gas emission level, humidity level, and temperature of fruits and veggies by using sensors and actuators to check the food spoilage level. This would additionally control the environment and avoid food spoilage wherever possible. Additionally, the food spoilage level is informed to the customer by an alert message sent to their registered mobile numbers based on the freshness and condition of the food. The model employed proved to have an accuracy rate of 95%. Finally, the experiment is successful in increasing the shelf life of some categories of food by 2 days.</jats:p
An Artificial Intelligence Approach for Expurgating Edible and Non-Edible Items
In the pandemic of COVID-19, it is crucial to consider the hygiene of the edible and nonedible things as it could be dangerous for our health to consume infected things. Furthermore, everything cannot be boiled before eating as it can destroy fruits and essential minerals and proteins. So, there is a dire need for a smart device that could sanitize edible items. The Germicidal Ultraviolet C (UVC) has proved the capabilities of destroying viruses and pathogens found on the surface of any objects. Although, a few minutes exposure to the UVC can destroy or inactivate the viruses and the pathogens, few doses of UVC light may damage the proteins of edible items and can affect the fruits and vegetables. To this end, we have proposed a novel design of a device that is employed with Artificial Intelligence along with UVC to auto detect the edible items and act accordingly. This causes limited UVC doses to be applied on different items as detected by proposed model according to their permissible limit. Additionally, the device is employed with a smart architecture which leads to consistent distribution of UVC light on the complete surface of the edible items. This results in saving the health as well as nutrition of edible items.</jats:p
Multichannel DenseNet Architecture for Classification of Mammographic Breast Density for Breast Cancer Detection
Percentage mammographic breast density (MBD) is one of the most notable biomarkers. It is assessed visually with the support of radiologists with the four qualitative Breast Imaging Reporting and Data System (BIRADS) categories. It is demanding for radiologists to differentiate between the two variably allocated BIRADS classes, namely, “BIRADS C and BIRADS D.” Recently, convolution neural networks have been found superior in classification tasks due to their ability to extract local features with shared weight architecture and space invariance characteristics. The proposed study intends to examine an artificial intelligence (AI)-based MBD classifier toward developing a latent computer-assisted tool for radiologists to distinguish the BIRADS class in modern clinical progress. This article proposes a multichannel DenseNet architecture for MBD classification. The proposed architecture consists of four-channel DenseNet transfer learning architecture to extract significant features from a single patient's two a mediolateral oblique (MLO) and two craniocaudal (CC) views of digital mammograms. The performance of the proposed classifier is evaluated using 200 cases consisting of 800 digital mammograms of the different BIRADS density classes with validated density ground truth. The classifier's performance is assessed with quantitative metrics such as precision, responsiveness, specificity, and the area under the curve (AUC). The concluding preliminary outcomes reveal that this intended multichannel model has delivered good performance with an accuracy of 96.67% during training and 90.06% during testing and an average AUC of 0.9625. Obtained results are also validated qualitatively with the help of a radiologist expert in the field of MBD. Proposed architecture achieved state-of-the-art results with a fewer number of images and with less computation power.</jats:p
Enhanced Elliptic Curve Scalar Multiplication Secure Against Side Channel Attacks and Safe Errors
International audienc
Single-Trace Side-Channel Attacks on Scalar Multiplications with Precomputations
© Springer International Publishing AG 2017. Single-trace side-channel attacks are a serious threat to elliptic curve cryptography in practice because they can break also cryptosystems where scalars are nonces (e.g., ECDSA). Previously it was believed that single-trace attacks can be avoided by using scalar multiplication algorithms with regular patterns of operations but recently we have learned that they can be broken with correlation tests to decide whether different operations share common operands. In this work, we extend these attacks to scalar multiplication algorithms with precomputations. We show that many algorithms are vulnerable to our attack which correlates measurements with precomputed values. We also show that successful attacks are possible even without knowledge of precomputed values by using clustering instead of correlations. We provide extensive evidence for the feasibility of the attacks with simulations and experiments with an 8-bit AVR. Finally, we discuss the effectiveness of certain countermeasures against our attacks.status: publishe
