2,806 research outputs found

    Towards the 3D-Imaging of Sources

    Full text link
    Geometric details of a nuclear reaction zone, at the time of particle emission, can be restored from low relative-velocity particle-correlations, following imaging. Some of the source details get erased and are a potential cause of problems in the imaging, in the form of instabilities. These can be coped with by following the method of discretized optimization for the restored sources. So far it has been possible to produce 1-dimensional emission source images, corresponding to the reactions averaged over all possible spatial directions. Currently, efforts are in progress to restore angular details.Comment: Talk given at the Int. Workshop on Hot and Dense Matter in Relativistic Heavy Ion Collisions, March 24-27, 2004, Budapest; 10 pages, 6 figure

    Hamiltonian approach to QCD in Coulomb gauge - a survey of recent results

    Get PDF
    I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. Furthermore this approach is compared to recent lattice data, which were obtained by an alternative gauge fixing method and which show an improved agreement with the continuum results. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector a vacuum wave functional is used which explicitly contains the coupling of the quarks to the transverse gluons and which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. The effective potential of the Polyakov loop is evaluated from the zero-temperature variational solution. For pure Yang--Mills theory, the deconfinement phase transition is found to be second order for SU(2) and first order for SU(3), in agreement with the lattice results. The corresponding critical temperatures are found to be 275MeV275 \, \mathrm{MeV} and 280MeV280 \, \mathrm{MeV}, respectively. When quarks are included, the deconfinement transition turns into a cross-over. From the dual and chiral quark condensate one finds pseudo-critical temperatures of 198MeV198 \, \mathrm{MeV} and 170MeV170 \, \mathrm{MeV}, respectively, for the deconfinement and chiral transition.Comment: Talk given by H. Reinhardt at "5th Winter Workshop on Non-Perturbative Quantum Field Theory", 22-24 March 2017, Sophia-Antipolis, France. arXiv admin note: text overlap with arXiv:1609.09370, arXiv:1510.03286, arXiv:1607.0814

    Pressure and linear heat capacity in the superconducting state of thoriated UBe13

    Full text link
    Even well below Tc, the heavy-fermion superconductor (U,Th)Be13 has a large linear term in its specific heat. We show that under uniaxial pressure, the linear heat capacity increases in magnitude by more than a factor of two. The change is reversible and suggests that the linear term is an intrinsic property of the material. In addition, we find no evidence of hysteresis or of latent heat in the low-temperature and low-pressure portion of the phase diagram, showing that all transitions in this region are second order.Comment: 5 pages, 4 figure

    Grain Physics and Rosseland Mean Opacities

    Full text link
    Tables of mean opacities are often used to compute the transfer of radiation in a variety of astrophysical simulations from stellar evolution models to proto-planetary disks. Often tables, such as Ferguson et al. (2005), are computed with a predetermined set of physical assumptions that may or may not be valid for a specific application. This paper explores the effects of several assumptions of grain physics on the Rosseland mean opacity in an oxygen rich environment. We find that changing the distribution of grain sizes, either the power-law exponent or the shape of the distribution, has a marginal effect on the total mean opacity. We also explore the difference in the mean opacity between solid homogenous grains and grains that are porous or conglomorations of several species. Changing the amount of grain opacity included in the mean by assuming a grain-to-gas ratio significantly affects the mean opacity, but in a predictable way.Comment: 19 pages, 6 figures, accepted for publication in Ap

    Half-skyrmion picture of single hole doped CuO_2 plane

    Full text link
    Based on the Zhang-Rice singlet picture, it is argued that the half-skyrmion is created by the doped hole in the single hole doped high-T_c cuprates with N'eel ordering. The spin configuration around the Zhang-Rice singlet, which has the form of superposition of the two different d-orbital hole spin states, is studied within the non-linear \sigma model and the CP^1 model. The spin configurations associated with each hole spin state are obtained, and we find that the superposition of these spin configuration turns out to be the half-skyrmion that is characterized by a half of the topological charge. The excitation spectrum of the half-skyrmion is obtained by making use of Lorentz invariance of the effective theory and is qualitatively in good agreement with angle resolved photoemission spectroscopy on the parent compunds. Estimated values of the parameters contained in the excitation spectrum are in good agreement with experimentally obtained values. The half-skyrmion theory suggests a picture for the difference between the hole doped compounds and the electron doped compounds.Comment: 13 pages, 2 figures, to be published in Phys. Rev.

    Colossal Magnetoresistance is a Griffiths Singularity

    Full text link
    It is now widely accepted that the magnetic transition in doped manganites that show large magnetoresistance is a type of percolation effect. This paper demonstrates that the transition should be viewed in the context of the Griffiths phase that arises when disorder suppresses a magnetic transition. This approach explains unusual aspects of susceptibility and heat capacity data from a single crystal of La0.7_{0.7}Ca0.3_{0.3}MnO3._{3}.Comment: 4 page

    Microscopic theories for cubic and tetrahedral superconductors: application to PrOs_4Sb_{12}

    Full text link
    We examine weak-coupling theory for unconventional superconducting states of cubic or tetrahedral symmetry for arbitrary order parameters and Fermi surfaces and identify the stable states in zero applied field. We further examine the possibility of having multiple superconducting transitions arising from the weak breaking of a higher symmetry group to cubic or tetrahedral symmetry. Specifically, we consider two higher symmetry groups. The first is a weak crystal field theory in which the spin-singlet Cooper pairs have an approximate spherical symmetry. The second is a weak spin orbit coupling theory for which spin-triplet Cooper pairs have a cubic orbital symmetry and an approximate spherical spin rotational symmetry. In hexagonal UPt_3, these theories easily give rise to multiple transitions. However, we find that for cubic materials, there is only one case in which two superconducting transitions occur within weak coupling theory. This sequence of transitions does not agree with the observed properties of PrOs_4Sb_{12}. Consequently, we find that to explain two transitions in PrOs_4Sb_{12} using approximate higher symmetry groups requires a strong coupling theory. In view of this, we finally consider a weak coupling theory for which two singlet representations have accidentally nearly degenerate transition temperatures (not due to any approximate symmetries). We provide an example of such a theory that agrees with the observed properties of PrOs_4Sb_{12}.Comment: 11 pages,1 figur

    Chiral Correction to the Spin Fluctuation Feedback in two-dimensional p-wave Superconductors

    Full text link
    We consider the stability of the superconducting phase for spin-triplet p-wave pairing in a quasi-two-dimensional system. We show that in the absence of spin-orbit coupling there is a chiral contribution to spin fluctuation feedback which is related to spin quantum Hall effect in a chiral superconducting phase. We show that this mechanism supports the stability of a chiral p-wave state.Comment: 8 pages. The final version is accepted for publication in Europhys Let
    corecore