3,374 research outputs found
Liquidity Hoarding and Interbank Market Spreads: The Role of Counterparty Risk
We study the functioning and possible breakdown of the interbank market due to asymmetric information about counterparty risk. We allow for privately observed shocks to the distribution of asset risk across banks after the initial portfolio of liquid and illiquid investments is chosen. Our model generates sev- eral interbank market regimes: 1) low interest rate spread and full participation; 2) elevated spread and adverse selection; and 3) liquidity hoarding leading to a market breakdown. The regimes are in line with observed developments in the interbank market before and during the 2007-09 financial crisis. We use the model to examine various policy responses.Financial crisis;Interbank market;Liquidity;Asymmetric in- formation
Multirelational Organization of Large-scale Social Networks in an Online World
The capacity to collect fingerprints of individuals in online media has
revolutionized the way researchers explore human society. Social systems can be
seen as a non-linear superposition of a multitude of complex social networks,
where nodes represent individuals and links capture a variety of different
social relations. Much emphasis has been put on the network topology of social
interactions, however, the multi-dimensional nature of these interactions has
largely been ignored in empirical studies, mostly because of lack of data.
Here, for the first time, we analyze a complete, multi-relational, large social
network of a society consisting of the 300,000 odd players of a massive
multiplayer online game. We extract networks of six different types of
one-to-one interactions between the players. Three of them carry a positive
connotation (friendship, communication, trade), three a negative (enmity, armed
aggression, punishment). We first analyze these types of networks as separate
entities and find that negative interactions differ from positive interactions
by their lower reciprocity, weaker clustering and fatter-tail degree
distribution. We then proceed to explore how the inter-dependence of different
network types determines the organization of the social system. In particular
we study correlations and overlap between different types of links and
demonstrate the tendency of individuals to play different roles in different
networks. As a demonstration of the power of the approach we present the first
empirical large-scale verification of the long-standing structural balance
theory, by focusing on the specific multiplex network of friendship and enmity
relations.Comment: 7 pages, 5 figures, accepted for publication in PNA
Heavy Superheated Droplet Detectors as a Probe of Spin-independent WIMP Dark Matter Existence
At present, application of Superheated Droplet Detectors (SDDs) in WIMP dark
matter searches has been limited to the spin-dependent sector, owing to the
general use of fluorinated refrigerants which have high spin sensitivity. Given
their recent demonstration of a significant constraint capability with
relatively small exposures and the relative economy of the technique, we
consider the potential impact of heavy versions of such devices on the
spin-independent sector. Limits obtainable from a -loaded SDD
are estimated on the basis of the radiopurity levels and backgrounds already
achieved by the SIMPLE and PICASSO experiments. With 34 kgd exposure,
equivalent to the current CDMS, such a device may already probe to below
10 pb in the spin-independent cross section.Comment: 9 pages, 4 figures, accepted Phys. Rev.
Statistical relational learning with soft quantifiers
Quantification in statistical relational learning (SRL) is either existential or universal, however humans might be more inclined to express knowledge using soft quantifiers, such as ``most'' and ``a few''. In this paper, we define the syntax and semantics of PSL^Q, a new SRL framework that supports reasoning with soft quantifiers, and present its most probable explanation (MPE) inference algorithm. To the best of our knowledge, PSL^Q is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for link prediction in social trust networks demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves the accuracy of inferred results
Status of the PICASSO Project
The Picasso project is a dark matter search experiment based on the
superheated droplet technique. Preliminary runs performed at the Picasso Lab in
Montreal have showed the suitability of this detection technique to the search
for weakly interacting cold dark matter particles. In July 2002, a new phase of
the project started. A batch of six 1-liter detectors with an active mass of
approximately 40g was installed in a gallery of the SNO observatory in Sudbury,
Ontario, Canada at a depth of 6,800 feet (2,070m). We give a status report on
the new experimental setup, data analysis, and preliminary limits on
spin-dependent neutralino interaction cross section.Comment: 3 pages, 2 figures. To appear in the Proceedings of the TAUP 2003
conference, 5-9 September, 2003, University of Washington, Seattle, US
Nonlinear eigenvalue problem for optimal resonances in optical cavities
The paper is devoted to optimization of resonances in a 1-D open optical
cavity. The cavity's structure is represented by its dielectric permittivity
function e(s). It is assumed that e(s) takes values in the range 1 <= e_1 <=
e(s) <= e_2. The problem is to design, for a given (real) frequency, a cavity
having a resonance with the minimal possible decay rate. Restricting ourselves
to resonances of a given frequency, we define cavities and resonant modes with
locally extremal decay rate, and then study their properties. We show that such
locally extremal cavities are 1-D photonic crystals consisting of alternating
layers of two materials with extreme allowed dielectric permittivities e_1 and
e_2. To find thicknesses of these layers, a nonlinear eigenvalue problem for
locally extremal resonant modes is derived. It occurs that coordinates of
interface planes between the layers can be expressed via arg-function of
corresponding modes. As a result, the question of minimization of the decay
rate is reduced to a four-dimensional problem of finding the zeroes of a
function of two variables.Comment: 16 page
Kink far below the Fermi level reveals new electron-magnon scattering channel in Fe
Many properties of real materials can be modeled using ab initio methods
within a single-particle picture. However, for an accurate theoretical
treatment of excited states, it is necessary to describe electron-electron
correlations including interactions with bosons: phonons, plasmons, or magnons.
In this work, by comparing spin- and momentum-resolved photoemission
spectroscopy measurements to many-body calculations carried out with a newly
developed first-principles method, we show that a kink in the electronic band
dispersion of a ferromagnetic material can occur at much deeper binding
energies than expected (E_b=1.5 eV). We demonstrate that the observed spectral
signature reflects the formation of a many-body state that includes a photohole
bound to a coherent superposition of renormalized spin-flip excitations. The
existence of such a many-body state sheds new light on the physics of the
electron-magnon interaction which is essential in fields such as spintronics
and Fe-based superconductivity.Comment: 6 pages, 2 figure
Dynamics of Social Balance on Networks
We study the evolution of social networks that contain both friendly and
unfriendly pairwise links between individual nodes. The network is endowed with
dynamics in which the sense of a link in an imbalanced triad--a triangular loop
with 1 or 3 unfriendly links--is reversed to make the triad balanced. With this
dynamics, an infinite network undergoes a dynamic phase transition from a
steady state to "paradise"--all links are friendly--as the propensity p for
friendly links in an update event passes through 1/2. A finite network always
falls into a socially-balanced absorbing state where no imbalanced triads
remain. If the additional constraint that the number of imbalanced triads in
the network does not increase in an update is imposed, then the network quickly
reaches a balanced final state.Comment: 10 pages, 7 figures, 2-column revtex4 forma
Optimization of quasi-normal eigenvalues for Krein-Nudelman strings
The paper is devoted to optimization of resonances for Krein strings with
total mass and statical moment constraints. The problem is to design for a
given a string that has a resonance on the line \alpha + \i
\R with a minimal possible modulus of the imaginary part. We find optimal
resonances and strings explicitly.Comment: 9 pages, these results were extracted in a slightly modified form
from the earlier e-print arXiv:1103.4117 [math.SP] following an advise of a
journal's refere
- …
