6,072 research outputs found

    Electronic and Optical Properties of Vacancy Defects in Transition Metal Dichalcogenides

    Full text link
    A detailed first-principle study has been performed to evaluate the electronic and optical properties of single-layer (SL) transition metal dichalcogenides (TMDCs) (MX2{}_2; M= transition metal such as Mo, W and X= S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs i) XX-vacancy, X2X_{2}-vacancy, and iii) MM-vacancy. We show that VDs lead to localized defect states (LDS) in the band structure, which in turn give rise to sharp transitions in in-plane and out-of-plane optical susceptibilities, χ\chi_{\parallel} and χ\chi_{\perp}. The effects of spin orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties we also find magnetic signatures (local magnetic moment of μB\sim\mu_{B}) in MoSe2_{2} in the presence of Mo vacancy, which breaks the time reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple qualitative tight binding model (TBM), involving only the hopping between atoms surrounding the vacancy with an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the LDS can be understood from the solution of the 2D Dirac Hamiltonian by employing infinite mass boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory to derive the optical selection rules between LDS for both χ\chi_{\parallel} and χ\chi_{\perp}.Comment: 14 pages, 11 figure

    Viral pathogens and acute lung injury: investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic.

    Get PDF
    Acute viral pneumonia is an important cause of acute lung injury (ALI), although not enough is known about the exact incidence of viral infection in ALI. Polymerase chain reaction-based assays, direct fluorescent antigen (DFA) assays, and viral cultures can detect viruses in samples from the human respiratory tract, but the presence of the virus does not prove it to be a pathogen, nor does it give information regarding the interaction of viruses with the host immune response and bacterial flora of the respiratory tract. The severe acute respiratory syndrome (SARS) epidemic and the 2009 H1N1 influenza pandemic provided a better understanding of how viral pathogens mediate lung injury. Although the viruses initially infect the respiratory epithelium, the relative role of epithelial damage and endothelial dysfunction has not been well defined. The inflammatory host immune response to H1N1 infection is a major contributor to lung injury. The SARS coronavirus causes lung injury and inflammation in part through actions on the nonclassical renin angiotensin pathway. The lessons learned from the pandemic outbreaks of SARS coronavirus and H1N1 capture key principles of virally mediated ALI. There are pathogen-specific pathways underlying virally mediated ALI that converge onto a common end pathway resulting in diffuse alveolar damage. In terms of therapy, lung protective ventilation is the cornerstone of supportive care. There is little evidence that corticosteroids are beneficial, and they might be harmful. Future therapeutic strategies may be targeted to specific pathogens, the pathogenetic pathways in the host immune response, or enhancing repair and regeneration of tissue damage

    Measurement of Magnetization Dynamics in Single-Molecule Magnets Induced by Pulsed Millimeter-Wave Radiation

    Full text link
    We describe an experiment aimed at measuring the spin dynamics of the Fe8 single-molecule magnet in the presence of pulsed microwave radiation. In earlier work, heating was observed after a 0.2-ms pulse of intense radiation, indicating that the spin system and the lattice were out of thermal equilibrium at millisecond time scale [Bal et al., Europhys. Lett. 71, 110 (2005)]. In the current work, an inductive pick-up loop is used to probe the photon-induced magnetization dynamics between only two levels of the spin system at much shorter time scales (from ns to us). The relaxation time for the magnetization, induced by a pulse of radiation, is found to be on the order of 10 us.Comment: 3 RevTeX pages, including 3 eps figures. The paper will appear in the Journal of Applied Physics as MMM'05 conference proceeding

    The role of pump coherence in two-photon interferometry

    Full text link
    We use a parametric down-conversion source pumped by a short coherence-length continuous-wave (CW) diode laser to perform two-photon interferometry in an intermediate regime between the more familiar Franson-type experiments with a long coherence-length pump laser, and the short pulsed pump "time-bin" experiments pioneered by Gisin's group. The use of a time-bin-like Mach-Zehnder interferometer in the CW pumping beam induces coherence between certain two-photon amplitudes, while the CW nature of the experiment prevents the elimination of remaining incoherent ones. The experimental results highlight the role of pump coherence in two-photon interferometry

    Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV)

    Get PDF
    The International Committee on Taxonomy of Viruses (ICTV) is charged with the task of developing, refining, and maintaining a universal virus taxonomy. This task encompasses the classification of virus species and higher-level taxa according to the genetic and biological properties of their members; naming virus taxa; maintaining a database detailing the currently approved taxonomy; and providing the database, supporting proposals, and other virus-related information from an open-access, public web site. The ICTV web site (http://ictv.global) provides access to the current taxonomy database in online and downloadable formats, and maintains a complete history of virus taxa back to the first release in 1971. The ICTV has also published the ICTV Report on Virus Taxonomy starting in 1971. This Report provides a comprehensive description of all virus taxa covering virus structure, genome structure, biology and phylogenetics. The ninth ICTV report, published in 2012, is available as an open-access online publication from the ICTV web site. The current, 10th report (http://ictv.global/report/), is being published online, and is replacing the previous hard-copy edition with a completely open access, continuously updated publication. No other database or resource exists that provides such a comprehensive, fully annotated compendium of information on virus taxa and taxonomy
    corecore