8,150 research outputs found
Automated Reconstruction of Particle Cascades in High Energy Physics Experiments
We present a procedure for reconstructing particle cascades from event data
measured in a high energy physics experiment. For evaluating the hypothesis of
a specific physics process causing the observed data, all possible
reconstruction versions of the scattering process are constructed from the
final state objects. We describe the procedure as well as examples of physics
processes of different complexity studied at hadron-hadron colliders. We
estimate the performance by 20 microseconds per reconstructed decay vertex, and
0.6 kByte per reconstructed particle in the decay trees.Comment: 8 pages, 2 figures. Submitted to Computational Science & Discover
A Development Environment for Visual Physics Analysis
The Visual Physics Analysis (VISPA) project integrates different aspects of
physics analyses into a graphical development environment. It addresses the
typical development cycle of (re-)designing, executing and verifying an
analysis. The project provides an extendable plug-in mechanism and includes
plug-ins for designing the analysis flow, for running the analysis on batch
systems, and for browsing the data content. The corresponding plug-ins are
based on an object-oriented toolkit for modular data analysis. We introduce the
main concepts of the project, describe the technical realization and
demonstrate the functionality in example applications
Improved aperture measurements at the LHC and results from their application in 2015
A good knowledge of the available aperture in the LHC
is essential for a safe operation due to the risk of magnet
quenches or even damage in case of uncontrolled beam
losses. Experimental validations of the available aperture
are therefore crucial and were in the past carried out by either a collimator scan combined with beam excitations or
through the use of local orbit bumps. In this paper, we show
a first comparison of these methods in the same machine
configuration, as well as a new very fast method based on a
beam-based collimator alignment and a new faster variant
of the collimator scan method. The methods are applied
to the LHC operational configuration for 2015 at injection
and with squeezed beams and the measured apertures are
presented.peer-reviewe
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Measurement of diffraction dissociation cross sections in pp collisions at = 7 TeV
Measurements of diffractive dissociation cross sections in pp collisions at s√=7 TeV are presented in kinematic regions defined by the masses MX and MY of the two final-state hadronic systems separated by the largest rapidity gap in the event. Differential cross sections are measured as a function of ξX=M2X/s in the region −5.53, log10MX>1.1, and log10MY>1.1, a region dominated by DD. The cross sections integrated over these regions are found to be, respectively, 2.99±0.02(stat)+0.32−0.29(syst) mb, 1.18±0.02(stat)±0.13(syst) mb, and 0.58±0.01(stat)+0.13−0.11(syst) mb, and are used to extract extrapolated total SD and DD cross sections. In addition, the inclusive differential cross section, dσ/dΔηF, for events with a pseudorapidity gap adjacent to the edge of the detector, is measured over ΔηF=8.4 units of pseudorapidity. The results are compared to those of other experiments and to theoretical predictions and found compatible with slowly rising diffractive cross sections as a function of center-of-mass energy
- …
