5,661 research outputs found

    Thermal fatigue and oxidation data on TAZ-8A, MAR-M 200, and Udimet 700 superalloys

    Get PDF
    The fluidized bed technique was used to determine the relative thermal fatigue and oxidation resistance of three superalloys: TAZ-8A, Mar-M 200, and Udimet 700. The alloys TAZ-8A and MAR-M 200 were also tested in the directionally-solidified form. For the 13 combinations of composition, solidification method, surface protection, and specimen geometry, the cycles to cracking varied from 1250 to 15,000. The alloy/coating having the best resistance to thermal fatigue cracking was coated directionally-solidified NASA TAZ-8A. This combination also had excellent oxidation resistance

    Evidence of Critical Balance in Kinetic Alfven Wave Turbulence Simulations

    Full text link
    A numerical simulation of kinetic plasma turbulence is performed to assess the applicability of critical balance to kinetic, dissipation scale turbulence. The analysis is performed in the frequency domain to obviate complications inherent in performing a local analysis of turbulence. A theoretical model of dissipation scale critical balance is constructed and compared to simulation results, and excellent agreement is found. This result constitutes the first evidence of critical balance in a kinetic turbulence simulation and provides evidence of an anisotropic turbulence cascade extending into the dissipation range. We also perform an Eulerian frequency analysis of the simulation data and compare it to the results of a previous study of magnetohydrodynamic turbulence simulations.Comment: 10 pages, 9 figures, accepted for publication in Physics of Plasma

    Current Sheets and Collisionless Damping in Kinetic Plasma Turbulence

    Full text link
    We present the first study of the formation and dissipation of current sheets at electron scales in a wave-driven, weakly collisional, 3D kinetic turbulence simulation. We investigate the relative importance of dissipation associated with collisionless damping via resonant wave-particle interactions versus dissipation in small-scale current sheets in weakly collisional plasma turbulence. Current sheets form self-consistently from the wave-driven turbulence, and their filling fraction is well correlated to the electron heating rate. However, the weakly collisional nature of the simulation necessarily implies that the current sheets are not significantly dissipated via Ohmic dissipation. Rather, collisionless damping via the Landau resonance with the electrons is sufficient to account for the measured heating as a function of scale in the simulation, without the need for significant Ohmic dissipation. This finding suggests the possibility that the dissipation of the current sheets is governed by resonant wave-particle interactions and that the locations of current sheets correspond spatially to regions of enhanced heating.Comment: 8 pages, 5 figures, accepted to ApJ

    Collisionless Reconnection in the Large Guide Field Regime: Gyrokinetic Versus Particle-in-Cell Simulations

    Full text link
    Results of the first validation of large guide field, Bg/δB01B_g / \delta B_0 \gg 1, gyrokinetic simulations of magnetic reconnection at a fusion and solar corona relevant βi=0.01\beta_i = 0.01 and solar wind relevant βi=1\beta_i = 1 are presented, where δB0\delta B_0 is the reconnecting field. Particle-in-cell (PIC) simulations scan a wide range of guide magnetic field strength to test for convergence to the gyrokinetic limit. The gyrokinetic simulations display a high degree of morphological symmetry, to which the PIC simulations converge when βiBg/δB01\beta_i B_g / \delta B_0 \gtrsim 1 and Bg/δB01B_g / \delta B_0 \gg 1. In the regime of convergence, the reconnection rate, relative energy conversion, and overall magnitudes are found to match well between the PIC and gyrokinetic simulations, implying that gyrokinetics is capable of making accurate predictions well outside its regime of formal applicability. These results imply that in the large guide field limit many quantities resulting from the nonlinear evolution of reconnection scale linearly with the guide field.Comment: 5 pages, 4 figures, accepted as PoP lette

    Interpreting Magnetic Variance Anisotropy Measurements in the Solar Wind

    Full text link
    The magnetic variance anisotropy (Am\mathcal{A}_m) of the solar wind has been used widely as a method to identify the nature of solar wind turbulent fluctuations; however, a thorough discussion of the meaning and interpretation of the Am\mathcal{A}_m has not appeared in the literature. This paper explores the implications and limitations of using the Am\mathcal{A}_m as a method for constraining the solar wind fluctuation mode composition and presents a more informative method for interpreting spacecraft data. The paper also compares predictions of the Am\mathcal{A}_m from linear theory to nonlinear turbulence simulations and solar wind measurements. In both cases, linear theory compares well and suggests the solar wind for the interval studied is dominantly Alfv\'{e}nic in the inertial and dissipation ranges to scales kρi5k \rho_i \simeq 5.Comment: 15 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Multiscale nature of the dissipation range in gyrokinetic simulations of Alfv\'enic turbulence

    Full text link
    Nonlinear energy transfer and dissipation in Alfv\'en wave turbulence are analyzed in the first gyrokinetic simulation spanning all scales from the tail of the MHD range to the electron gyroradius scale. For typical solar wind parameters at 1 AU, about 30% of the nonlinear energy transfer close to the electron gyroradius scale is mediated by modes in the tail of the MHD cascade. Collisional dissipation occurs across the entire kinetic range kρi1k_\perp\rho_i\gtrsim 1. Both mechanisms thus act on multiple coupled scales, which have to be retained for a comprehensive picture of the dissipation range in Alfv\'enic turbulence.Comment: Made several improvements to figures and text suggested by referee
    corecore