9,340 research outputs found

    The monitoring system for the aerogel Cherenkov counter of the BELLE detector

    Get PDF
    We report on a design and performances of a monitoring system developed for the aerogel Cherenkov counters (ACC) of the BELLE detector. The system consists of blue LEDs, a diffuser box, and optical distributors which distribute the LED light to the ACC modules. The employed LED (NSPB series) has been observed to have high reliability on the long term stability and the temprature dependence. The diffuser box is employed to reduce the intrinsic non-uniformity of the LED light intensity. The overall performances of the present monitoring system on uniformity and intensity of the light output have been found to satisfy all the requirements for the monitoring.Comment: 24 pages, LaTeX, 13 eps figures, to be published in Nucl. Instrum. and Meth. A. Postscript file (4.5 MB) is available at http://www-hep.phys.saga-u.ac.jp/~murakami/paper/xxx_accmon.p

    Heat conduction of single-walled carbon nanotube isotope-superlattice structures: A molecular dynamics study

    Full text link
    Heat conduction of single-walled carbon nanotubes (SWNTs) isotope-superlattice is investigated by means of classical molecular dynamics simulations. Superlattice structures were formed by alternately connecting SWNTs with different masses. On varying the superlattice period, the critical value with minimum effective thermal conductivity was identified, where dominant physics switches from zone-folding effect to thermal boundary resistance of lattice interface. The crossover mechanism is explained with the energy density spectra where zone-folding effects can be clearly observed. The results suggest that the critical superlattice period thickness depends on the mean free path distribution of diffusive-ballistic phonons. The reduction of the thermal conductivity with superlattice structures beats that of the one-dimensional alloy structure, though the minimum thermal conductivity is still slightly higher than the value obtained by two-dimensional random mixing of isotopes.Comment: 7 Pages, 5 figures, accepted to Phys. Rev.

    Behaviour in Magnetic Fields of Fast Conventional and Fine-Mesh Photomultipliers

    Full text link
    The performance of both conventional and fine-mesh Hamamatsu photomultipliers has been measured inside moderate magnetic fields. This has allowed the test of effective shielding solutions for photomultipliers, to be used in time-of-flight detectors based on scintillation counters. Both signal amplitude reduction or deterioration of the timing properties inside magnetic fields have been investigated

    Tau phosphorylation at Alzheimer\u27s disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated.

    Get PDF
    Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer\u27s disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains

    Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors

    Full text link
    Substantial progress on field effect transistors "FETs" consisting of semiconducting single wall carbon nanotubes "s-SWNTs" without detectable traces of metallic nanotubes and impurities is reported. Nearly perfect removal of metallic nanotubes is confirmed by optical absorption, Raman measurements, and electrical measurements. This outstanding result was made possible in particular by ultracentrifugation (150 000 g) of solutions prepared from SWNT powders using polyfluorene as an extracting agent in toluene. Such s-SWNTs processable solutions were applied to realize FET, embodying randomly or preferentially oriented nanotube networks prepared by spin coating or dielectrophoresis. Devices exhibit stable p-type semiconductor behavior in air with very promising characteristics. The on-off current ratio is 10^5, the on-current level is around 10 μ\muA, and the estimated hole mobility is larger than 2 cm2 / V s

    Size Effects in Carbon Nanotubes

    Full text link
    The inter-shell spacing of multi-walled carbon nanotubes was determined by analyzing the high resolution transmission electron microscopy images of these nanotubes. For the nanotubes that were studied, the inter-shell spacing d^002{\hat{d}_{002}} is found to range from 0.34 to 0.39 nm, increasing with decreasing tube diameter. A model based on the results from real space image analysis is used to explain the variation in inter-shell spacings obtained from reciprocal space periodicity analysis. The increase in inter-shell spacing with decreased nanotube diameter is attributed to the high curvature, resulting in an increased repulsive force, associated with the decreased diameter of the nanotube shells.Comment: 4 pages. RevTeX. 4 figure

    Investigating the transformations of polyoxoanions using mass spectrometry and molecular dynamics

    Get PDF
    The reactions of [γ-SiW10O36]8– represent one of the most important synthetic gateways into a vast array of polyoxotungstate chemistry. Herein, we set about exploring the transformation of the lacunary polyoxoanion [β2-SiW11O39]8– into [γ-SiW10O36]8– using high-resolution electrospray mass spectrometry, density functional theory, and molecular dynamics. We show that the reaction proceeds through an unexpected {SiW9} precursor capable of undertaking a direct β → γ isomerization via a rotational transformation. The remarkably low-energy transition state of this transformation could be identified through theoretical calculations. Moreover, we explore the significant role of the countercations for the first time in such studies. This combination of experimental and the theoretical studies can now be used to understand the complex chemical transformations of oxoanions, leading to the design of reactivity by structural control

    Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer\u27s disease-related tau phosphorylation via PAR-1.

    Get PDF
    Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer\u27s disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi-mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD-related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD

    Tests of a proximity focusing RICH with aerogel as radiator

    Full text link
    Using aerogel as radiator and multianode PMTs for photon detection, a proximity focusing Cherenkov ring imaging detector has been constructed and tested in the KEK π\pi2 beam. The aim is to experimentally study the basic parameters such as resolution of the single photon Cherenkov angle and number of detected photons per ring. The resolution obtained is well approximated by estimates of contributions from pixel size and emission point uncertainty. The number of detected photons per Cherenkov ring is in good agreement with estimates based on aerogel and detector characteristics. The values obtained turn out to be rather low, mainly due to Rayleigh scattering and to the relatively large dead space between the photocathodes. A light collection system or a higher fraction of the photomultiplier active area, together with better quality aerogels are expected to improve the situation. The reduction of Cherenkov yield, for charged particle impact in the vicinity of the aerogel tile side wall, has also been measured.Comment: 4 pages, 8 figure

    Quantum transport in a curved one-dimensional quantum wire with spin-orbit interactions

    Full text link
    The one-dimensional effective Hamiltonian for a planar curvilinear quantum wire with arbitrary shape is proposed in the presence of the Rashba spin-orbit interaction. Single electron propagation through a device of two straight lines conjugated with an arc has been investigated and the analytic expressions of the reflection and transmission probabilities have been derived. The effects of the device geometry and the spin-orbit coupling strength α\alpha on the reflection and transmission probabilities and the conductance are investigated in the case of spin polarized electron incidence. We find that no spin-flip exists in the reflection of the first junction. The reflection probabilities are mainly influenced by the arc angle and the radius, while the transmission probabilities are affected by both spin-orbit coupling and the device geometry. The probabilities and the conductance take the general behavior of oscillation versus the device geometry parameters and α\alpha . Especially the electron transportation varies periodically versus the arc angle θw\theta_{w}. We also investigate the relationship between the conductance and the electron energy, and find that electron resonant transmission occurs for certain energy. Finally, the electron transmission for the incoming electron with arbitrary state is considered. For the outgoing electron, the polarization ratio is obtained and the effects of the incoming electron state are discussed. We find that the outgoing electron state can be spin polarization and reveal the polarized conditions.Comment: 7 pages, 8 figure
    corecore