1,260 research outputs found

    R-symmetry breaking, runaway directions and global symmetries in O'Raifeartaigh models

    Full text link
    We discuss O'Raifeartaigh models with general R-charge assignments, introduced by Shih to break R-symmetry spontaneously. We argue that most of these models have runaway directions related to the R-symmetry. In addition, we study the simplest model with a U(N) global symmetry and show that in a range of parameters R-symmetry is spontaneously broken in a metastable vacuum.Comment: 16 pages, 1 figur

    Supersymmetry Breaking, R-Symmetry Breaking and Metastable Vacua

    Full text link
    Models of spontaneous supersymmetry breaking generically have an R-symmetry, which is problematic for obtaining gaugino masses and avoiding light R-axions. The situation is improved in models of metastable supersymmetry breaking, which generically have only an approximate R-symmetry. Based on this we argue, with mild assumptions, that metastable supersymmetry breaking is inevitable. We also illustrate various general issues regarding spontaneous and explicit R-symmetry breaking, using simple toy models of supersymmetry breaking.Comment: 23 page

    A Sequence of Duals for Sp(2N) Supersymmetric Gauge Theories with Adjoint Matter

    Get PDF
    We consider supersymmetric Sp(2N) gauge theories with F matter fields in the defining representation, one matter field in the adjoint representation, and no superpotential. We construct a sequence of dual descriptions of this theory using the dualities of Seiberg combined with the ``deconfinement'' method introduced by Berkooz. Our duals hint at a new non-perturbative phenomenon that seems to be taking place at asymptotically low energies in these theories: for small F some of the degrees of freedom form massless, non-interacting bound states while the theory remains in an interacting non-Abelian Coulomb phase. This phenomenon is the result of strong coupling gauge dynamics in the original description, but has a simple classical origin in the dual descriptions. The methods used for constructing these duals can be generalized to any model involving arbitrary 2-index tensor representations of Sp(2N), SO(N), or SU(N) groups.Comment: version (with additional references) to appear in Phys. Rev. D, 20 pages, LaTeX, one embedded eps figur

    A Systematic Approach to Confinement in N=1 Supersymmetric Gauge Theories

    Get PDF
    We give necessary criteria for N=1 supersymmetric theories to be in a smoothly confining phase without chiral symmetry breaking and with a dynamically generated superpotential. Using our general arguments we find all such confining SU and Sp theories with a single gauge group and no tree level superpotential.Comment: 8 pages, LaTe

    More on Chiral-Nonchiral Dual Pairs

    Get PDF
    Expanding upon earlier work of Pouliot and Strassler, we construct chiral magnetic duals to nonchiral supersymmetric electric theories based upon SO(7), SO(8) and SO(9) gauge groups with various numbers of vector and spinor matter superfields. Anomalies are matched and gauge invariant operators are mapped within each dual pair. Renormalization group flows along flat directions are also examined. We find that confining phase quantum constraints in the electric theories are recovered from semiclassical equations of motion in their magnetic counterparts when the dual gauge groups are completely Higgsed.Comment: 25 pages, harvmac and tables macros, 1 figur

    The Dual of Supersymmetric SU(2k) with an Antisymmetric Tensor and Composite Dualities

    Get PDF
    We suggest a dual to an SU(2k)SU(2k) Susy gauge theory containing an antisymmetric tensor, \nf fundamentals and \nfb anti-fundamentals. This is done by expanding the theory into an equivalent description with two gauge groups and then performing known duality tranformations on each gauge group separately. Chiral operators, mass perturbations and flat directions are discussed.Comment: 17 pages, Harvma

    On the Z_2 Monopole of Spin(10) Gauge Theories

    Full text link
    An "expanded" description is introduced to examine the spinor-monopole identification proposed by Strassler for four-dimensional N\cal N = 1 supersymmetric Spin(10) gauge theories with matter in F vector and N spinor representations. It is shown that a Z_2 monopole in the "expanded" theory is associated with massive spinors of the Spin(10) theory. For N=2, two spinor case, we confirm this identification by matching the transformation properties of the two theories under SU(2) flavor symmetry. However, for N \ge 3, the transformation properties are not matched between the spinors and the monopole. This disagreement might be due to the fact that the SU(N) flavor symmetry of the Spin(10) theory is partially realized as an SU(2) symmetry in the "expanded" theory.Comment: 16 pages, LaTex, no figur

    Conifold Transitions in M-theory on Calabi-Yau Fourfolds with Background Fluxes

    Full text link
    We consider topology changing transitions for M-theory compactifications on Calabi-Yau fourfolds with background G-flux. The local geometry of the transition is generically a genus g curve of conifold singularities, which engineers a 3d gauge theory with four supercharges, near the intersection of Coulomb and Higgs branches. We identify a set of canonical, minimal flux quanta which solve the local quantization condition on G for a given geometry, including new solutions in which the flux is neither of horizontal nor vertical type. A local analysis of the flux superpotential shows that the potential has flat directions for a subset of these fluxes and the topologically different phases can be dynamically connected. For special geometries and background configurations, the local transitions extend to extremal transitions between global fourfold compactifications with flux. By a circle decompactification the M-theory analysis identifies consistent flux configurations in four-dimensional F-theory compactifications and flat directions in the deformation space of branes with bundles.Comment: 93 pages; v2: minor changes and references adde

    A search for solar wind velocity changes between 0.7 and 1 AU

    Get PDF
    Simultaneous observations of the solar wind velocity as measured at the Pioneer 9 and Ogo 5 spacecraft during five solar rotations in 1968 and 1969 are presented. During this time, Pioneer 9 was traveling in toward the sun to approximately 0.7 AU while the earth orbiter Ogo 5 was spending long periods in the interplanetary medium. A comparison of the 3-hour averages of solar wind velocity obtained at both spacecraft indicates that the same basic solar wind velocity structure was seen at both spacecraft. There was no statistically significant dependence of average velocity on radial distance from the sun. The amplitude of variations about the average velocity apparently decreased with increasing distance from the sun; some but probably not all of this decreased variation is consistent with the exchange of momentum between high-velocity and low-velocity streams. The correlation coefficient of pairs of velocity averages computed from a corotation model decreases with increasing distance between the two spacecraft
    corecore