1,457 research outputs found
Temperature-extended Jarzynski relation: Application to the numerical calculation of the surface tension
We consider a generalization of the Jarzynski relation to the case where the
system interacts with a bath for which the temperature is not kept constant but
can vary during the transformation. We suggest to use this relation as a
replacement to the thermodynamic perturbation method or the Bennett method for
the estimation of the order-order surface tension by Monte Carlo simulations.
To demonstrate the feasibility of the method, we present some numerical data
for the 3D Ising model
On the center of mass of Ising vectors
We show that the center of mass of Ising vectors that obey some simple
constraints, is again an Ising vector.Comment: 8 pages, 3 figures, LaTeX; Claims in connection with disordered
systems have been withdrawn; More detailed description of the simulations;
Inset added to figure
On the occurrence of oscillatory modulations in the power-law behavior of dynamic and kinetic processes in fractals
The dynamic and kinetic behavior of processes occurring in fractals with
spatial discrete scale invariance (DSI) is considered. Spatial DSI implies the
existence of a fundamental scaling ratio (b_1). We address time-dependent
physical processes, which as a consequence of the time evolution develop a
characteristic length of the form , where z is the dynamic
exponent. So, we conjecture that the interplay between the physical process and
the symmetry properties of the fractal leads to the occurrence of time DSI
evidenced by soft log-periodic modulations of physical observables, with a
fundamental time scaling ratio given by . The conjecture is
tested numerically for random walks, and representative systems of broad
universality classes in the fields of irreversible and equilibrium critical
phenomena.Comment: 6 pages, 3 figures. Submitted to EP
Diffusive Thermal Dynamics for the Ising Ferromagnet
We introduce a thermal dynamics for the Ising ferromagnet where the energy
variations occurring within the system exhibit a diffusive character typical of
thermalizing agents such as e.g. localized excitations. Time evolution is
provided by a walker hopping across the sites of the underlying lattice
according to local probabilities depending on the usual Boltzmann weight at a
given temperature. Despite the canonical hopping probabilities the walker
drives the system to a stationary state which is not reducible to the canonical
equilibrium state in a trivial way. The system still exhibits a magnetic phase
transition occurring at a finite value of the temperature larger than the
canonical one. The dependence of the model on the density of walkers realizing
the dynamics is also discussed. Interestingly the differences between the
stationary state and the Boltzmann equilibrium state decrease with increasing
number of walkers.Comment: 9 pages, 14 figures. Accepted for publication on PR
Geodesics for Efficient Creation and Propagation of Order along Ising Spin Chains
Experiments in coherent nuclear and electron magnetic resonance, and optical
spectroscopy correspond to control of quantum mechanical ensembles, guiding
them from initial to final target states by unitary transformations. The
control inputs (pulse sequences) that accomplish these unitary transformations
should take as little time as possible so as to minimize the effects of
relaxation and decoherence and to optimize the sensitivity of the experiments.
Here we give efficient syntheses of various unitary transformations on Ising
spin chains of arbitrary length. The efficient realization of the unitary
transformations presented here is obtained by computing geodesics on a sphere
under a special metric. We show that contrary to the conventional belief, it is
possible to propagate a spin order along an Ising spin chain with coupling
strength J (in units of Hz), significantly faster than 1/(2J) per step. The
methods presented here are expected to be useful for immediate and future
applications involving control of spin dynamics in coherent spectroscopy and
quantum information processing
Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction
A general analysis of thermal noise in torsion pendulums is presented. The
specific case where the torsion angle is kept fixed by electronic feedback is
analyzed. This analysis is applied to a recent experiment that employed a
torsion pendulum to measure the Casimir force. The ultimate limit to the
distance at which the Casimir force can be measured to high accuracy is
discussed, and in particular the prospects for measuring the thermal correction
are elaborated upon.Comment: one figure, five pages, to be submitted to Phys Rev
Exact sampling from non-attractive distributions using summary states
Propp and Wilson's method of coupling from the past allows one to efficiently
generate exact samples from attractive statistical distributions (e.g., the
ferromagnetic Ising model). This method may be generalized to non-attractive
distributions by the use of summary states, as first described by Huber. Using
this method, we present exact samples from a frustrated antiferromagnetic
triangular Ising model and the antiferromagnetic q=3 Potts model. We discuss
the advantages and limitations of the method of summary states for practical
sampling, paying particular attention to the slowing down of the algorithm at
low temperature. In particular, we show that such a slowing down can occur in
the absence of a physical phase transition.Comment: 5 pages, 6 EPS figures, REVTeX; additional information at
http://wol.ra.phy.cam.ac.uk/mackay/exac
Canonical Solution of Classical Magnetic Models with Long-Range Couplings
We study the canonical solution of a family of classical spin
models on a generic -dimensional lattice; the couplings between two spins
decay as the inverse of their distance raised to the power , with
. The control of the thermodynamic limit requires the introduction of
a rescaling factor in the potential energy, which makes the model extensive but
not additive. A detailed analysis of the asymptotic spectral properties of the
matrix of couplings was necessary to justify the saddle point method applied to
the integration of functions depending on a diverging number of variables. The
properties of a class of functions related to the modified Bessel functions had
to be investigated. For given , and for any , and lattice
geometry, the solution is equivalent to that of the model, where the
dimensionality and the geometry of the lattice are irrelevant.Comment: Submitted for publication in Journal of Statistical Physic
Statistically interacting quasiparticles in Ising chains
The exclusion statistics of two complementary sets of quasiparticles,
generated from opposite ends of the spectrum, are identified for Ising chains
with spin s=1/2,1. In the s=1/2 case the two sets are antiferromagnetic domain
walls (solitons) and ferromagnetic domains (strings). In the s=1 case they are
soliton pairs and nested strings, respectively. The Ising model is equivalent
to a system of two species of solitons for s=1/2 and to a system of six species
of soliton pairs for s=1. Solitons exist on single bonds but soliton pairs may
be spread across many bonds. The thermodynamics of a system of domains spanning
up to lattice sites is amenable to exact analysis and shown to become
equivalent, in the limit M -> infinity, to the thermodynamics of the s=1/2
Ising chain. A relation is presented between the solitons in the Ising limit
and the spinons in the XX limit of the s=1/2 XXZ chain.Comment: 18 pages and 4 figure
Spin-spin interaction and spin-squeezing in an optical lattice
We show that by displacing two optical lattices with respect to each other,
we may produce interactions similar to the ones describing ferro-magnetism in
condensed matter physics. We also show that particularly simple choices of the
interaction lead to spin-squeezing, which may be used to improve the
sensitivity of atomic clocks. Spin-squeezing is generated even with partially,
and randomly, filled lattices, and our proposal may be implemented with current
technology.Comment: 4 pages, including 4 figure
- …
