300 research outputs found
Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components
If an absolute reference frame with respect to time, position, or orientation
is missing one can only implement quantum operations which are covariant with
respect to the corresponding unitary symmetry group G. Extending observations
of Vaccaro et al., I argue that the free energy of a quantum system with
G-invariant Hamiltonian then splits up into the Holevo information of the orbit
of the state under the action of G and the free energy of its orbit average.
These two kinds of free energy cannot be converted into each other. The first
component is subadditive and the second superadditive; in the limit of
infinitely many copies only the usual free energy matters.
Refined splittings of free energy into more than two independent
(non-increasing) terms can be defined by averaging over probability measures on
G that differ from the Haar measure.
Even in the presence of a reference frame, these results provide lower bounds
on the amount of free energy that is lost after applying a covariant channel.
If the channel properly decreases one of these quantities, it decreases the
free energy necessarily at least by the same amount, since it is unable to
convert the different forms of free energies into each other.Comment: 17 pages, latex, 1 figur
Spin-1/2 particles moving on a 2D lattice with nearest-neighbor interactions can realize an autonomous quantum computer
What is the simplest Hamiltonian which can implement quantum computation
without requiring any control operations during the computation process? In a
previous paper we have constructed a 10-local finite-range interaction among
qubits on a 2D lattice having this property. Here we show that
pair-interactions among qutrits on a 2D lattice are sufficient, too, and can
also implement an ergodic computer where the result can be read out from the
time average state after some post-selection with high success probability.
Two of the 3 qutrit states are given by the two levels of a spin-1/2 particle
located at a specific lattice site, the third state is its absence. Usual
hopping terms together with an attractive force among adjacent particles induce
a coupled quantum walk where the particle spins are subjected to spatially
inhomogeneous interactions implementing holonomic quantum computing. The
holonomic method ensures that the implemented circuit does not depend on the
time needed for the walk.
Even though the implementation of the required type of spin-spin interactions
is currently unclear, the model shows that quite simple Hamiltonians are
powerful enough to allow for universal quantum computing in a closed physical
system.Comment: More detailed explanations including description of a programmable
version. 44 pages, 12 figures, latex. To appear in PR
Distinguishing cause from effect using observational data: methods and benchmarks
The discovery of causal relationships from purely observational data is a
fundamental problem in science. The most elementary form of such a causal
discovery problem is to decide whether X causes Y or, alternatively, Y causes
X, given joint observations of two variables X, Y. An example is to decide
whether altitude causes temperature, or vice versa, given only joint
measurements of both variables. Even under the simplifying assumptions of no
confounding, no feedback loops, and no selection bias, such bivariate causal
discovery problems are challenging. Nevertheless, several approaches for
addressing those problems have been proposed in recent years. We review two
families of such methods: Additive Noise Methods (ANM) and Information
Geometric Causal Inference (IGCI). We present the benchmark CauseEffectPairs
that consists of data for 100 different cause-effect pairs selected from 37
datasets from various domains (e.g., meteorology, biology, medicine,
engineering, economy, etc.) and motivate our decisions regarding the "ground
truth" causal directions of all pairs. We evaluate the performance of several
bivariate causal discovery methods on these real-world benchmark data and in
addition on artificially simulated data. Our empirical results on real-world
data indicate that certain methods are indeed able to distinguish cause from
effect using only purely observational data, although more benchmark data would
be needed to obtain statistically significant conclusions. One of the best
performing methods overall is the additive-noise method originally proposed by
Hoyer et al. (2009), which obtains an accuracy of 63+-10 % and an AUC of
0.74+-0.05 on the real-world benchmark. As the main theoretical contribution of
this work we prove the consistency of that method.Comment: 101 pages, second revision submitted to Journal of Machine Learning
Researc
Identifiability of Causal Graphs using Functional Models
This work addresses the following question: Under what assumptions on the
data generating process can one infer the causal graph from the joint
distribution? The approach taken by conditional independence-based causal
discovery methods is based on two assumptions: the Markov condition and
faithfulness. It has been shown that under these assumptions the causal graph
can be identified up to Markov equivalence (some arrows remain undirected)
using methods like the PC algorithm. In this work we propose an alternative by
defining Identifiable Functional Model Classes (IFMOCs). As our main theorem we
prove that if the data generating process belongs to an IFMOC, one can identify
the complete causal graph. To the best of our knowledge this is the first
identifiability result of this kind that is not limited to linear functional
relationships. We discuss how the IFMOC assumption and the Markov and
faithfulness assumptions relate to each other and explain why we believe that
the IFMOC assumption can be tested more easily on given data. We further
provide a practical algorithm that recovers the causal graph from finitely many
data; experiments on simulated data support the theoretical findings
A Quantum Broadcasting Problem in Classical Low Power Signal Processing
We pose a problem called ``broadcasting Holevo-information'': given an
unknown state taken from an ensemble, the task is to generate a bipartite state
transfering as much Holevo-information to each copy as possible.
We argue that upper bounds on the average information over both copies imply
lower bounds on the quantum capacity required to send the ensemble without
information loss. This is because a channel with zero quantum capacity has a
unitary extension transfering at least as much information to its environment
as it transfers to the output.
For an ensemble being the time orbit of a pure state under a Hamiltonian
evolution, we derive such a bound on the required quantum capacity in terms of
properties of the input and output energy distribution. Moreover, we discuss
relations between the broadcasting problem and entropy power inequalities.
The broadcasting problem arises when a signal should be transmitted by a
time-invariant device such that the outgoing signal has the same timing
information as the incoming signal had. Based on previous results we argue that
this establishes a link between quantum information theory and the theory of
low power computing because the loss of timing information implies loss of free
energy.Comment: 28 pages, late
Decomposition of time-covariant operations on quantum systems with continuous and/or discrete energy spectrum
Every completely positive map G that commutes which the Hamiltonian time
evolution is an integral or sum over (densely defined) CP-maps G_\sigma where
\sigma is the energy that is transferred to or taken from the environment. If
the spectrum is non-degenerated each G_\sigma is a dephasing channel followed
by an energy shift. The dephasing is given by the Hadamard product of the
density operator with a (formally defined) positive operator. The Kraus
operator of the energy shift is a partial isometry which defines a translation
on R with respect to a non-translation-invariant measure.
As an example, I calculate this decomposition explicitly for the rotation
invariant gaussian channel on a single mode.
I address the question under what conditions a covariant channel destroys
superpositions between mutually orthogonal states on the same orbit. For
channels which allow mutually orthogonal output states on the same orbit, a
lower bound on the quantum capacity is derived using the Fourier transform of
the CP-map-valued measure (G_\sigma).Comment: latex, 33 pages, domains of unbounded operators are now explicitly
specified. Presentation more detailed. Implementing the shift after the
dephasing is sometimes more convenien
Simulating Hamiltonians in Quantum Networks: Efficient Schemes and Complexity Bounds
We address the problem of simulating pair-interaction Hamiltonians in n node
quantum networks where the subsystems have arbitrary, possibly different,
dimensions. We show that any pair-interaction can be used to simulate any other
by applying sequences of appropriate local control sequences. Efficient schemes
for decoupling and time reversal can be constructed from orthogonal arrays.
Conditions on time optimal simulation are formulated in terms of spectral
majorization of matrices characterizing the coupling parameters. Moreover, we
consider a specific system of n harmonic oscillators with bilinear interaction.
In this case, decoupling can efficiently be achieved using the combinatorial
concept of difference schemes. For this type of interactions we present optimal
schemes for inversion.Comment: 19 pages, LaTeX2
Distinguishing n Hamiltonians on C^n by a single measurement
If an experimentalist wants to decide which one of n possible Hamiltonians
acting on an n dimensional Hilbert space is present, he can conjugate the time
evolution by an appropriate sequence of known unitary transformations in such a
way that the different Hamiltonians result in mutual orthogonal final states.
We present a general scheme providing such a sequence.Comment: 4 pages, Revte
Causal Consistency of Structural Equation Models
Complex systems can be modelled at various levels of detail. Ideally, causal
models of the same system should be consistent with one another in the sense
that they agree in their predictions of the effects of interventions. We
formalise this notion of consistency in the case of Structural Equation Models
(SEMs) by introducing exact transformations between SEMs. This provides a
general language to consider, for instance, the different levels of description
in the following three scenarios: (a) models with large numbers of variables
versus models in which the `irrelevant' or unobservable variables have been
marginalised out; (b) micro-level models versus macro-level models in which the
macro-variables are aggregate features of the micro-variables; (c) dynamical
time series models versus models of their stationary behaviour. Our analysis
stresses the importance of well specified interventions in the causal modelling
process and sheds light on the interpretation of cyclic SEMs.Comment: equal contribution between Rubenstein and Weichwald; accepted
manuscrip
Fundamental limitations for quantum and nano thermodynamics
The relationship between thermodynamics and statistical physics is valid in
the thermodynamic limit - when the number of particles becomes very large.
Here, we study thermodynamics in the opposite regime - at both the nano scale,
and when quantum effects become important. Applying results from quantum
information theory we construct a theory of thermodynamics in these limits. We
derive general criteria for thermodynamical state transformations, and as
special cases, find two free energies: one that quantifies the
deterministically extractable work from a small system in contact with a heat
bath, and the other that quantifies the reverse process. We find that there are
fundamental limitations on work extraction from nonequilibrium states, owing to
finite size effects and quantum coherences. This implies that thermodynamical
transitions are generically irreversible at this scale. As one application of
these methods, we analyse the efficiency of small heat engines and find that
they are irreversible during the adiabatic stages of the cycle.Comment: Final, published versio
- …
