370 research outputs found
Flux-density spectral analysis for several pulsars and two newly-identified gigahertz-peaked spectra
In this paper we present results from flux density measurements for 21
pulsars over a wide frequency range, using the Giant Metrewave Radio Telescope
(GMRT) and the Effelsberg telescope. Our sample was a set of mostly newly
discovered pulsars from the selection of candidates for gigahertz-peaked
spectra (GPS) pulsars. Using the results of our observations along with
previously published data, we identify two new GPS pulsars. One of them, PSR
J1740+1000, with dispersion measure of 24 pc cm, is the first GPS pulsar
with such a low DM value.We also selected several strong candidates for objects
with high frequency turnover in their spectra which require further
investigation.We also revisit our source selection criteria for future searches
for GPS pulsars.Comment: 10 pages, 2 tables, 9 figures, accepted for publication in MNRA
The Effelsberg Search for Pulsars in the Galactic Centre
We report the status of a search for pulsars in the Galactic Centre, using acompletely revised and improved high-sensitivity double-horn system at4.85-GHz. We also present calculations about the success rate of periodicitysearches for such a survey, showing that in contrast to conclusions in recentliterature pulsars can be indeed detected at the chosen search frequency
On Pair Production in the Crab Pulsar
We consider the widespread assumption that coherent pulsar radio emission is
based on extended pair production leading to plasma densities highly exceeding
the Goldreich-Julian density. We show as an example that the observed low
frequency (160 MHz) emission of the Crab pulsar is incompatible to the model of
extended pair production. Our results rule out significant pair production if a
plasma process is responsible for coherence and the radio emission originates
from inside the light cylinder.Comment: accepted for publication in ApJ Letters; 4 pages, no figure
Statistical properties of giant pulses from the Crab pulsar
We have studied the statistics of giant pulses from the Crab pulsar for the
first time with particular reference to their widths. We have analyzed data
collected during 3.5 hours of observations conducted with the Westerbork
Synthesis Radio Telescope operated in a tied-array mode at a frequency of 1200
MHz. The PuMa pulsar backend provided voltage recording of X and Y linear
polarization states in two conjugate 10 MHz bands. We restricted the time
resolution to 4 microseconds to match the scattering on the interstellar
inhomogeneities. In total about 18000 giant pulses (GP) were detected in full
intensity with a threshold level of 6 sigma. Cumulative probability
distributions (CPD) of giant pulse energies were analyzed for groups of GPs
with different effective widths in the range 4 to 65 microseconds. The CPDs
were found to manifest notable differences for the different GP width groups.
The slope of a power-law fit to the high-energy portion of the CPDs evolves
from -1.7 to -3.2 when going from the shortest to the longest GPs. There are
breaks in the CPD power-law fits indicating flattening at low energies with
indices varying from -1.0 to -1.9 for the short and long GPs respectively. The
GPs with a stronger peak flux density were found to be of shorter duration. We
compare our results with previously published data and discuss the importance
of these peculiarities in the statistical properties of GPs for the heoretical
understanding of the emission mechanism responsible for GP generation.Comment: 5 pages, 2 figures. Accepted by Astronomy and Astrophysic
- …
