73 research outputs found
Cellular protection by erythropoietin: new therapeutic implications
ABSTRACT Erythropoietin (EPO), the principal hematopoietic hormone produced by the kidney and the liver in fetuses, regulates mammalian erythropoiesis and exhibits diverse cellular effects in nonhematopoietic tissues. The introduction of recombinant human EPO (rhEPO) has marked a significant advance in the management of anemia associated with chronic renal failure. At the same time, experimental studies have unveiled its potential neuroprotective and cardioprotective properties, occurring independently of its hematopoietic action. As with other cytoprotective agents, administration of exogenous rhEPO can confer cerebral and myocardial protection against ischemia-reperfusion injury in terms of reduction in cellular apoptosis and necrosis, as well as improvement in functional recovery. Very recent studies even suggest that this drug could have beneficial applications in oncology, protecting against chemotherapy cardiotoxicity. The purpose of this letter is to review current information regarding the various conditions in which rhEPO and its derivates could confer cellular protection. We also address clinical perspectives and novel therapeutic strategies that could be developed based on these studies. Thus, EPO seems to be a very promising agent for protecting cellular survival during both acute and chronic diseases, and its future should be considered with enthusiasm. The hormone erythropoietin (EPO), produced by the kidney and the liver in fetuses, is well known in regulating mammalian erythropoiesis. Exogenous EPO, the recombinant human EPO (rhEPO), introduced approximately two decades ago, is presently used for the treatment of anemia resulting from a variety of conditions, such as chronic renal failure and chemotherapy. However, since the last decade, the existence of EPO and its receptor (EPOR) localized outside of the liver and the kidney, such as the brain and heart, has been shown. At the same time, several experimental studies using rhEPO have unveiled the potential neuroprotective and cardioprotective role of EPO against ischemia, occurring independently of its hematopoietic action The cell possesses a remarkable ability to adapt to stress by changing its phenotype in a manner that renders it more resistant to subsequent injury. This powerful adaptative phenomenon called preconditioning is illustrated by the fact that a sublethal stress (such as ischemia or pharmacological agent administration) applied to an organ enhances its tolerance to a subsequent lethal stress. When preventively administered, rhEPO is able to mimic ischemic preconditioning, protecting neuronal and cardiac cell against various stresses, such as lethal ischemia or cytotoxic drugs In this article, we review current information regarding the various conditions in which rhEPO and its derivates could confer cellular protection. We also report recent data concerning the mechanisms underlying the cytoprotective effects of rhEPO, such as the role of EPOR and the activation of the following cellular signaling pathways. Finally, we adArticle, publication date, and citation information can be found a
Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways
Maladaptive changes in the carotid body (CB) induced by chronic intermittent hypoxia (IH) account for the pathogenesis of cardiovascular morbidity in patients with sleep-disordered breathing. We postulated that the proinflammatory cytokines, namely interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and cytokine receptors (IL-1r1, gp130 and TNFr1) locally expressed in the rat CB play a pathophysiological role in IH-induced CB inflammation. Results showed increased levels of oxidative stress (serum 8-isoprostane and nitrotyrosine in the CB) in rats with 7-day IH treatment resembling recurrent apneic conditions when compared with the normoxic control. Local inflammation shown by the amount of ED1-containing cells (macrophage infiltration) and the gene transcripts of NADPH oxidase subunits (gp91phox and p22phox) and chemokines (MCP-1, CCR2, MIP-1α, MIP-1β and ICAM-1) in the CB were significantly more in the hypoxic group than in the control. In addition, the cytokines and receptors were expressed in the lobules of chemosensitive glomus cells containing tyrosine hydroxylase and the levels of expressions were significantly increased in the hypoxic group. Exogenous cytokines elevated the intracellular calcium ([Ca2+]i) response to acute hypoxia in the dissociated glomus cells. The effect of cytokines on the [Ca2+]i response was significantly greater in the hypoxic than in the normoxic group. Moreover, daily treatment of IH rats with anti-inflammatory drugs (dexamethasone or ibuprofen) attenuated the levels of oxidative stress, gp91phox expression and macrophage infiltration in the CB. Collectively, these results suggest that the upregulated expression of proinflammatory cytokine pathways could mediate the local inflammation and functional alteration of the CB under chronic IH conditions
Cellular protection by erythropoietin: New therapeutic implications?
Erythropoietin (EPO), the principal hematopoietic hormone produced by the kidney and the liver in fetuses, regulates mammalian erythropoiesis and exhibits diverse cellular effects in nonhematopoietic tissues. The introduction of recombinant human EPO (rhEPO) has marked a significant advance in the management of anemia associated with chronic renal failure. At the same time, experimental studies have unveiled its potential neuroprotective and cardioprotective properties, occurring independently of its hematopoietic action. As with other cytoprotective agents, administration of exogenous rhEPO can confer cerebral and myocardial protection against ischemia-reperfusion injury in terms of reduction in cellular apoptosis and necrosis, as well as improvement in functional recovery. Very recent studies even suggest that this drug could have beneficial applications in oncology, protecting against chemotherapy cardiotoxicity. The purpose of this letter is to review current information regarding the various conditions in which rhEPO and its derivates could confer cellular protection. We also address clinical perspectives and novel therapeutic strategies that could be developed based on these studies. Thus, EPO seems to be a very promising agent for protecting cellular survival during both acute and chronic diseases, and its future should be considered with enthusiasm
P44 L’érythropoïétine ne protège pas contre les lésions ischémiques cardiaques chez le rat diabétique de type I
Biomarqueurs sanguins et urinaires chez les patients atteints d’un syndrome d’apnées obstructives du sommeil (SAOS) : comment juger de l’efficacité de la pression positive continue (PPC) ?
Long-term variations of arterial stiffness in patients with obesity and obstructive sleep apnea treated with continuous positive airway pressure
Background Obstructive sleep apnea (OSA) is associated with cardiovascular co-morbidities and mortality. Arterial stiffness is an independent predictor of cardiovascular risk and mortality, and is influenced by the presence of OSA and related comorbidities. There is a paucity of data regarding long-term evolution of arterial stiffness in CPAP-treated OSA patients. We aimed to prospectively study long term PWV variations and determinants of PWV deterioration. Methods In a prospective obese OSA cohort, at time of diagnosis and after several years of follow-up we collected arterial stiffness measured by carotid-femoral pulse wave velocity (PWV), clinical and metabolic parameters, and CPAP adherence. Univariate and multivariate analyses were performed in order to determine contributing factors. Results Seventy two OSA patients (men: 52.8%, median age: 55.8 years and median BMI of 38.5 kg/m2) with a prevalence of hypertension: 58.3%, type 2 diabetes: 20.8%, hypercholesterolemia: 33.3%, current or past smoking: 59.7%, were evaluated after a median follow-up of 7.4 [5.8; 8.3] years. Over the period of follow-up, the median increase in PWV was 1.34 [0.10; 2.37] m/s. In multivariate analysis, the increase in PWV was associated with older age (10 extra years was associated with a 5.24 [1.35; 9.12] % increase in PWV) and hypertension (a significant increase in PWV of 8.24 [1.02; 15.57] %). No impact of CPAP adherence on PWV evolution was found. Conclusion PWV progression in CPAP-treated OSA patients is mainly related to pre-existing cardiometabolic comorbidities and not influenced by CPAP adherence. In this high cardiovascular risk population, it is crucial to associated weight management and exercise with CPAP treatment
Efficacité de la pression positive continue chez le patient apnéique porteur d’une hypertension réfractaire. Résultats de l’étude randomisée contrôlée RHOOSAS
Pression positive continue et stéatose hépatique liée au syndrome d’apnées obstructives du sommeil : données d’essais randomisés contrôlés
- …
