233 research outputs found

    Hard X-Ray flux upper limits of central compact objects in supernova remnants

    Get PDF
    We searched for hard X-ray (20–300 keV) emission from nine central compact objects (CCOs) 1E 1207.4−5209, 1WGA J1713−3949, J082157.5−430017, J085201.4−461753, J1601−5133, J1613483−5055, J181852.0−150213, J185238.6+004020, and J232327.9+584843 with the INTEGRAL observatory. We applied spectral imaging analysis and did not detect any of the sources with luminosity upper limits in the range of 1033-1034 ergs/s in the 20-75 keV band. For nearby CCOs (< 4 kpc) the upper limit luminosities are an order of magnitude lower than the measured persistent hard X-ray luminosities of AXPs. This may indicate that the central compact objects are low magnetic field systems with fallback disks around them

    Wind, jet, hybrid corona and hard X-ray flares: multiwavelength evolution of GRO J1655-40 during the 2005 outburst rise

    Get PDF
    We have investigated the complex multiwavelength evolution of GRO J1655-40 during the rise of its 2005 outburst. We detected two hard X-ray flares, the first one during the transition from the soft state to the ultra-soft state, and the second one in the ultra-soft state. The first X-ray flare coincided with an optically thin radio flare. We also observed a hint of increased radio emission during the second X-ray flare. To explain the hard flares without invoking a secondary emission component, we fit the entire data set with the eqpair model. This single, hybrid Comptonization model sufficiently fits the data even during the hard X-ray flares if we allow reflection fractions greater than unity. In this case, the hard X-ray flares correspond to a Comptonizing corona dominated by non-thermal electrons. The fits also require absorption features in the soft and ultra-soft state which are likely due to a wind. In this work we show that the wind and the optically thin radio flare co-exist. Finally, we have also investigated the radio to optical spectral energy distribution, tracking the radio spectral evolution through the quenching of the compact jet and rise of the optically thin flare, and interpreted all data using state transition models.Comment: 16 pages, 11 figure

    Detection of Low-Hard State Spectral and Timing Signatures from the Black Hole X-Ray Transient XTE J1650-500 at Low X-Ray Luminosities

    Full text link
    Using the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer, we have studied the black hole candidate (BHC) X-ray transient XTE J1650-500 near the end of its 2001-2002 outburst after its transition to the low-hard state at X-ray luminosities down to L = 1.5E34 erg/s (1-9 keV, assuming a source distance of 4 kpc). Our results include a characterization of the spectral and timing properties. At the lowest sampled luminosity, we used an 18 ks Chandra observation to measure the power spectrum at low frequencies. For the 3 epochs at which we obtained Chandra/RXTE observations, the 0.5-20 keV energy spectrum is consistent with a spectral model consisting of a power-law with interstellar absorption. We detect evolution in the power-law photon index from 1.66 +/- 0.05 to 1.93 +/- 0.13 (90% confidence errors), indicating that the source softens at low luminosities. The power spectra are characterized by strong (20-35% fractional rms) band-limited noise, which we model as a zero-centered Lorentzian. Including results from an RXTE study of XTE J1650-500 near the transition to the low-hard state by Kalemci et al. (2003), the half-width of the zero-centered Lorentzian (roughly where the band-limited noise cuts off) drops from 4 Hz at L = 7E36 erg/s (1-9 keV, absorbed) to 0.067 +/- 0.007 Hz at L = 9E34 erg/s to 0.0035 +/- 0.0010 Hz at the lowest luminosity. While the spectral and timing parameters evolve with luminosity, it is notable that the general shapes of the energy and power spectra remain the same, indicating that the source stays in the low-hard state. This implies that the X-ray emitting region of the system likely keeps the same overall structure, while the luminosity changes by a factor of 470. We discuss how these results may constrain theoretical black hole accretion models.Comment: 11 pages, accepted by ApJ after minor revision

    Complete Multiwavelength Evolution of Galactic Black Hole Transients During Outburst Decay II: Compact Jets and X-ray Variability Properties

    Get PDF
    We investigated the relation between compact jet emission and X-ray variability properties of all black hole transients with multiwavelength coverage during their outburst decays. We studied the evolution of all power spectral components (including low frequency quasi-periodic oscillations), and related this evolution to changes in jet properties tracked by radio and infrared observations. We grouped sources according to their tracks in radio/X-ray luminosity relation, and show that the standards show stronger broadband X-ray variability than outliers at a given X-ray luminosity when the compact jet turned on. This trend is consistent with the internal shock model and can be important for the understanding of the presence of tracks in the radio/X-ray luminosity relation. We also observed that the total and the QPO rms amplitudes increase together during the earlier part of the outburst decay, but after the compact jet turns either the QPO disappears or its rms amplitude decreases significantly while the total rms amplitudes remain high. We discuss these results with a scenario including a variable corona and a non-variable disk with a mechanism for the QPO separate from the mechanism that create broad components. Finally, we evaluated the timing predictions of the magnetically dominated accretion flow model which can explain the presence of tracks in the radio/X-ray luminosity relation.Comment: Accepted for publication by Ap

    The appearance of a compact jet in the soft-intermediate state of 4U 1543-47

    Get PDF
    Recent advancements in the understanding of jet-disc coupling in black hole candidate X-ray binaries (BHXBs) have provided close links between radio jet emission and X-ray spectral and variability behaviour. In 'soft' X-ray states the jets are suppressed, but the current picture lacks an understanding of the X-ray features associated with the quenching or recovering of these jets. Here we show that a brief, ~4 day infrared (IR) brightening during a predominantly soft X-ray state of the BHXB 4U 1543-47 is contemporaneous with a strong X-ray Type B quasi-periodic oscillation (QPO), a slight spectral hardening and an increase in the rms variability, indicating an excursion to the soft-intermediate state (SIMS). This IR 'flare' has a spectral index consistent with optically thin synchrotron emission and most likely originates from the steady, compact jet. This core jet emitting in the IR is usually only associated with the hard state, and its appearance during the SIMS places the 'jet line' between the SIMS and the soft state in the hardness-intensity diagram for this source. IR emission is produced in a small region of the jets close to where they are launched (~ 0.1 light-seconds), and the timescale of the IR flare in 4U 1543-47 is far too long to be caused by a single, discrete ejection. We also present a summary of the evolution of the jet and X-ray spectral/variability properties throughout the whole outburst, constraining the jet contribution to the X-ray flux during the decay.Comment: Accepted to MNRAS. 11 pages, 6 figure

    Search for polarization from the prompt gamma-ray emission of GRB 041219a with SPI on INTEGRAL

    Get PDF
    Measuring the polarization of the prompt gamma-ray emission from GRBs can significantly improve our understanding of both the GRB emission mechanisms, as well as the underlying engine driving the explosion. We searched for polarization in the prompt gamma-ray emission of GRB 041219a with the SPI instrument on INTEGRAL. Using multiple-detector coincidence events in the 100--350 keV energy band, our analysis yields a polarization fraction from this GRB of 99 +- 33 %. Statistically, we cannot claim a polarization detection from this source. Moreover, different event selection criteria lead to even less significant polarization fractions, e.g. lower polarization fractions are obtained when higher energies are included in the analysis. We cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219a do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, and the techniques developed for this analysis

    Relations between x-ray timing features and spectral parameters of galactic black hole x-ray binaries

    Get PDF
    We present a study of correlations between spectral and timing parameters for a sample of black hole X-ray binary candidates. Data are taken from GX 339-4, H 1743-322, and XTE J1650-500, as the Rossi X-ray Timing Explorer (RXTE) observed complete outbursts of these sources. In our study we investigate outbursts that happened before the end of 2009 to make use of the high-energy coverage of the HEXTE detector and select observations that show a certain type of quasi-periodic oscillations (type-C QPOs). The spectral parameters are derived using the empirical convolution model simpl to model the Comptonized component of the emission together with a disc blackbody for the emission of the accretion disc. Additional spectral features, namely a reflection component, a high-energy cut-off, and excess emission at 6.4 keV, are taken into account. Our investigations confirm the known positive correlation between photon index and centroid frequency of the QPOs and reveal an anti-correlation between the fraction of up-scattered photons and the QPO frequency. We show that both correlations behave as expected in the “sombrero” geometry. Furthermore, we find that during outburst decay the correlation between photon index and QPO frequency follow a general track, independent of individual outbursts

    The infrared/X-ray correlation of GX 339-4: Probing hard X-ray emission in accreting black holes

    Get PDF
    GX 339-4 has been one of the key sources for unravelling the accretion ejection coupling in accreting stellar mass black holes. After a long period of quiescence between 1999 and 2002, GX 339-4 underwent a series of 4 outbursts that have been intensively observed by many ground based observatories [radio, infrared(IR), optical] and satellites (X-rays). Here, we present results of these broad-band observational campaigns, focusing on the optical-IR (OIR)/X-ray flux correlations over the four outbursts. We found tight OIR/X-ray correlations over four decades with the presence of a break in the IR/X-ray correlation in the hard state. This correlation is the same for all four outbursts. This can be interpreted in a consistent way by considering a synchrotron self-Compton origin of the X-rays in which the break frequency varies between the optically thick and thin regime of the jet spectrum. We also highlight the similarities and differences between optical/X-ray and IR/X-ray correlations which suggest a jet origin of the near-IR emission in the hard state while the optical is more likely dominated by the blackbody emission of the accretion disc in both hard and soft state. However we find a non negligible contribution of 40 per cent of the jet emission in the V-band during the hard state. We finally concentrate on a soft-to-hard state transition during the decay of the 2004 outburst by comparing the radio, IR, optical and hard X-rays light curves. It appears that unusual delays between the peak of emission in the different energy domains may provide some important constraints on jet formation scenario.Comment: Accepted for publication in MNRAS, 12 pages, 8 figure

    The inclination angle and mass of the black hole in XTE J1118+480

    Get PDF
    We have obtained optical and infrared photometry of the quiescent soft X-ray transient XTE J1118+480. In addition to optical and J-band variations, we present H- and Ks-band ellipsoidal variations for this system. We model the variations in all bands simultaneously with the WD98 light curve modeling code. The infrared colors of the secondary star in this system are consistent with those of a K7 V, while there is evidence for light from the accretion disk in the optical. Combining the models with the observed spectral energy distribution of the system, the most likely value for the orbital inclination angle is 68 degrees ±2 degrees. This inclination angle corresponds to a primary black hole mass of 8.53+/-0.60 M☉. Based on the derived physical parameters and infrared colors of the system, we determine a distance of 1.72+/-0.10 kpc to XTE J1118+480
    corecore