6 research outputs found

    SEASONAL ASSESSMENT OF HYDROGRAPHIC VARIABLES AND PHYTOPLANKTON COMMUNITY IN THE ARABIAN SEA WATERS OF KERALA, SOUTHWEST COAST OF INDIA

    Get PDF
    The seasonal variation of the hydrographic variables and phytoplankton species in the Arabian Sea waters of the Kerala coast, Southern India was investigated during different seasons. The variables such as pH, temperature, salinity, turbidity and chlorophyll-a contents of water were found to be high during pre-monsoon season and the dissolved oxygen content was minimal. The concentration of nutrients viz., nitrate, phosphate, silicate varied independently. In the study a total of 53 species of phytoplankton were recorded. Their density was higher during the post-monsoon season than during other seasons and the diatoms were found to be the dominant species. The major phytoplankton in terms of frequency and abundance were the species namely, Biddulphia mobiliensis, Chaetoceros curvisetus, Licmophora abbreviata, Skeletonema costatum, Prorocentrum micans and Oscillatoria sp. They showed significant positive correlation with pH, temperature, salinity, nitrate, phosphate and chlorophyll-a contents, whereas turbidity, dissolved oxygen and silicate exhibited significant negative correlation. The Principal Component Analysis (PCA) developed two principal components with 84.74% of total variability in the water quality which separated pre- and post-monsoon periods from the monsoon season on axis I, and pre-monsoon and monsoon periods from post-monsoon on axis II

    Mass spectrometric method for the unambiguous profiling of cellular dynamic glycosylation

    Full text link
    ABSTRACTVarious biological processes at the cellular level are regulated by glycosylation which is a highly micro-heterogeneous post-translational modification (PTM) on proteins and lipids. The dynamic nature of glycosylation can be studied through bio-orthogonal tagging of metabolically engineered non-natural sugars into glycan epitopes. However, this approach possesses a significant drawback due to non-specific background reactions and ambiguity of non-natural sugar metabolism. Here we report a tag-free strategy for their direct detection by glycoproteomics and glycomics using mass spectrometry. The method dramatically simplifies the detection of non-natural functional group bearing monosaccharides installed through promiscuous sialic acid, GalNAc, and GlcNAc biosynthetic pathways. Multistage enrichment of glycoproteins by cellular fractionation, subsequent ZIC-HILIC based glycopeptide enrichment, and a spectral enrichment algorithm for the MS data processing enabled direct detection of non-natural monosaccharides that are incorporated at low abundance on the N/O-glycopeptides along with their natural counterparts. Our approach allowed the detection of both natural and non-natural sugar bearing glycopeptides, N and O-glycopeptides, differentiation of non-natural monosaccharide types on the glycans and also their incorporation efficiency through quantitation. Through this we could deduce some interconversion of monosaccharides during their processing through glycan salvage pathway and subsequent incorporation into glycan chains. The study of glycosylation dynamics through this method can be conducted in high throughput as few sample processing steps are involved, enabling understanding of glycosylation dynamics under various external stimuli and thereby could bolster the use of metabolic glycan engineering in glycosylation functional studies.</jats:p
    corecore