521 research outputs found
A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects
BACKGROUND:
Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes; however, successful maintenance of weight loss continues to pose a challenge.
OBJECTIVE:
The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain.
DESIGN:
Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records.
RESULTS:
No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects.
CONCLUSION:
This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenanc
Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake
BACKGROUND:
The mechanisms underlying body weight evolution after diet-induced weight loss are poorly understood.
OBJECTIVE:
We aimed to identify and characterize differences in the subcutaneous adipose tissue (SAT) transcriptome of subjects with different weight changes after energy restriction-induced weight loss during 6 mo on 4 different diets.
DESIGN:
After an 8-wk low-calorie diet (800 kcal/d), we randomly assigned weight-reduced obese subjects from 8 European countries to receive 4 diets that differed in protein and glycemic index content. In addition to anthropometric and plasma markers, SAT biopsies were taken at the beginning [clinical investigation day (CID) 2] and end (CID3) of the weight follow-up period. Microarray analysis was used to define SAT gene expression profiles at CID2 and CID3 in 22 women with continued weight loss (successful group) and in 22 women with weight regain (unsuccessful group) across the 4 dietary arms.
RESULTS:
Differences in SAT gene expression patterns between successful and unsuccessful groups were mainly due to weight variations rather than to differences in dietary macronutrient content. An analysis of covariance with total energy intake as a covariate identified 1338 differentially expressed genes. Cellular growth and proliferation, cell death, cellular function, and maintenance were the main biological processes represented in SAT from subjects who regained weight. Mitochondrial oxidative phosphorylation was the major pattern associated with continued weight loss.
CONCLUSIONS:
The ability to control body weight loss independent of energy intake or diet composition is reflected in the SAT transcriptome. Although cell proliferation may be detrimental, a greater mitochondrial energy gene expression is suggested as being beneficial for weight control
Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD.
OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD).
DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing.
RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing.
CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD
TFAP2B influences the effect of dietary fat on weight loss under energy restriction
BACKGROUND:
Numerous gene loci are related to single measures of body weight and shape. We investigated if 55 SNPs previously associated with BMI or waist measures, modify the effects of fat intake on weight loss and waist reduction under energy restriction.
METHODS AND FINDINGS:
Randomized controlled trial of 771 obese adults. (Registration: ISRCTN25867281.) One SNP was selected for replication in another weight loss intervention study of 934 obese adults. The original trial was a 10-week 600 kcal/d energy-deficient diet with energy percentage from fat (fat%) in range of 20-25 or 40-45. The replication study used an 8-weeks diet of 880 kcal/d and 20 fat%; change in fat% intake was used for estimation of interaction effects. The main outcomes were intervention weight loss and waist reduction. In the trial, mean change in fat% intake was -12/+4 in the low/high-fat groups. In the replication study, it was -23/-12 among those reducing fat% more/less than the median. TFAP2B-rs987237 genotype AA was associated with 1.0 kg (95% CI, 0.4; 1.6) greater weight loss on the low-fat, and GG genotype with 2.6 kg (1.1; 4.1) greater weight loss on the high-fat (interaction p-value; p = 0.00007). The replication study showed a similar (non-significant) interaction pattern. Waist reduction results generally were similar. Study-strengths include (i) the discovery study randomised trial design combined with the replication opportunity (ii) the strict dietary intake control in both studies (iii) the large sample sizes of both studies. Limitations are (i) the low minor allele frequency of the TFAP2B polymorphism, making it hard to investigate non-additive genetic effects (ii) the different interventions preventing identical replication-discovery study designs (iii) some missing data for non-completers and dietary intake. No adverse effects/outcomes or side-effects were observed.
CONCLUSIONS:
Under energy restriction, TFAP2B may modify the effect of dietary fat intake on weight loss and waist reduction
Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation
Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases
Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance: the DIOGENES study
Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI (HP/HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic (16:1n-7), myristoleic (14:1n-5) and trans-palmitoleic acid (16:1n-7t). Negative correlation was found with baseline oleic acid (18:1n-9). Lower baseline monounsaturated fatty acids (14:1n-5, 16:1n-7 and trans 16:1n-7) in adipose tissue triglycerides predict better weight maintenance. Lower oleic acid predicts lower weight decrease. These findings suggest a specific role of monounsaturated fatty acids in weight management and as weight change predictors
Combined molecular dynamics and quantum trajectories simulation of laser-driven, collisional systems
We introduce a combined molecular dynamics (MD) and quantum trajectories (QT)
code to simulate the effects of near-resonant optical fields on state-vector
evolution and particle motion in a collisional system. In contrast to
collisionless systems, in which the quantum dynamics of multi-level,
laser-driven particles with spontaneous emission can be described with the
optical Bloch equations (OBEs), particle velocities in sufficiently collisional
systems change on timescales comparable to those of the laser-induced,
quantum-state dynamics. These transient velocity changes can cause the
time-averaged velocity dependence of the quantum state to differ from the OBE
solution. We use this multiscale code to describe laser-cooling in a strontium
ultracold neutral plasma. Important phenomena described by the simulation
include suppression of electromagnetically induced transparencies through rapid
velocity changing collisions and thermalization between cooled and un-cooled
directions for anisotropic laser cooling.Comment: 14 pages, 10 figure
Genetic polymorphisms and weight loss in obesity: A randomised trial of hypo-energetic high-versus low-fat diets
OBJECTIVES:
To study if genes with common single nucleotide polymorphisms (SNPs) associated with obesity-related phenotypes influence weight loss (WL) in obese individuals treated by a hypo-energetic low-fat or high-fat diet.
DESIGN:
Randomised, parallel, two-arm, open-label multi-centre trial.
SETTING:
Eight clinical centres in seven European countries.
PARTICIPANTS:
771 obese adult individuals.
INTERVENTIONS:
10-wk dietary intervention to hypo-energetic (-600 kcal/d) diets with a targeted fat energy of 20%-25% or 40%-45%, completed in 648 participants.
OUTCOME MEASURES:
WL during the 10 wk in relation to genotypes of 42 SNPs in 26 candidate genes, probably associated with hypothalamic regulation of appetite, efficiency of energy expenditure, regulation of adipocyte differentiation and function, lipid and glucose metabolism, or production of adipocytokines, determined in 642 participants.
RESULTS:
Compared with the noncarriers of each of the SNPs, and after adjusting for gender, age, baseline weight and centre, heterozygotes showed WL differences that ranged from -0.6 to 0.8 kg, and homozygotes, from -0.7 to 3.1 kg. Genotype-dependent additional WL on low-fat diet ranged from 1.9 to -1.6 kg in heterozygotes, and from 3.8 kg to -2.1 kg in homozygotes relative to the noncarriers. Considering the multiple testing conducted, none of the associations was statistically significant.
CONCLUSIONS:
Polymorphisms in a panel of obesity-related candidate genes play a minor role, if any, in modulating weight changes induced by a moderate hypo-energetic low-fat or high-fat diet
Dietary factors impact on the association between CTSS variants and obesity related traits.
Cathepsin S, a protein coded by the CTSS gene, is implicated in adipose tissue biology--this protein enhances adipose tissue development. Our hypothesis is that common variants in CTSS play a role in body weight regulation and in the development of obesity and that these effects are influenced by dietary factors--increased by high protein, glycemic index and energy diets
The case for strategic international alliances to harness nutritional genomics for public and personal health
Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countrie
- …
