164 research outputs found

    Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.

    Get PDF
    Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems

    The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference

    Get PDF
    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR)

    Viral protein Nef is detected in plasma of half of HIV-infected adults with undetectable plasma HIV RNA

    Get PDF
    ObjectiveTo address the role of translationally active HIV reservoir in chronic inflammation and non-AIDS related disorders, we first need a simple and accurate assay to evaluate viral protein expression in virally suppressed subjects.DesignWe optimized an HIV Nef enzyme-linked immunosorbent assay (ELISA) and used it to quantify plasma Nef levels as an indicator of the leaky HIV reservoir in an HIV-infected cohort.MethodsThis study accessed 134 plasma samples from a well-characterized cohort study of HIV-infected and uninfected adults in San Francisco (the SCOPE cohort). We optimized an ELISA for detection of plasma Nef in HIV-negative subjects and HIV-infected non-controllers, and evaluated its utility to quantify plasma Nef levels in a cross-sectional study of ART-suppressed and elite controller HIV-infected subjects.ResultsHere, we describe the performance of an optimized HIV Nef ELISA. When we applied this assay to the study cohort we found that plasma Nef levels were correlated with plasma HIV RNA levels in untreated disease. However, we were able to detect Nef in plasma of approximately half of subjects on ART or with elite control, despite the lack of detectable plasma HIV RNA levels using standard assays. Plasma Nef levels were not consistently associated with CD4+ T-cell count, CD8+ T-cell count, self-reported nadir CD4+ T-cell count or the CD4+/CD8+ T-cell ratio in HIV-infected subjects.ConclusionSince plasma HIV RNA levels are undetectable in virally suppressed subjects, it is reasonable to assume that viral protein expression in leaky reservoir, and not plasma virions, is the source of Nef accumulating in plasma. To examine this further, improvements of the assay sensitivity, by lowering the background through improvements in the quality of Nef antibodies, and detailed characterization of the HIV reservoirs are needed

    Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles

    Get PDF
    The minimal information for studies of extracellular vesicles (EVs, MISEV) is a field-consensus rigour initiative of the International Society for Extracellular Vesicles (ISEV). The last update to MISEV, MISEV2018, was informed by input from more than 400 scientists and made recommendations in the six broad topics of EV nomenclature, sample collection and pre-processing, EV separation and concentration, characterization, functional studies, and reporting requirements/exceptions. To gather opinions on MISEV and ideas for new updates, the ISEV Board of Directors canvassed previous MISEV authors and society members. Here, we share conclusions that are relevant to the ongoing evolution of the MISEV initiative and other ISEV rigour and standardization efforts

    EyeG2P: an automated variant filtering approach improves efficiency of diagnostic genomic testing for inherited ophthalmic disorders

    Get PDF
    BACKGROUND: Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS: We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS: EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION: Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders

    Multi-disciplinary team directed analysis of whole genome sequencing reveals pathogenic non-coding variants in molecularly undiagnosed inherited retinal dystrophies

    Get PDF
    PURPOSE: To identify, using genome sequencing (GS), likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes Methods: Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis and plausible pathogenic variants and clinical phenotype evaluated by multi-disciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbour a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested including by mRNA analysis, minigene and luciferase reporter assays. RESULTS: Previously unreported, likely pathogenic, non-coding variants, in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10, and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1, USH2A) or altered transcription levels (BBS10, GUCY2D). CONCLUSION: MDT-led, phenotype driven, non-coding variant re-analysis of GS is effective in identifying missing causative alleles

    An Improved Phenotype-Driven Tool for Rare Mendelian Variant Prioritization: Benchmarking Exomiser on Real Patient Whole-Exome Data

    Get PDF
    Next-generation sequencing has revolutionized rare disease diagnostics, but many patients remain without a molecular diagnosis, particularly because many candidate variants usually survive despite strict filtering. Exomiser was launched in 2014 as a Java tool that performs an integrative analysis of patients’ sequencing data and their phenotypes encoded with Human Phenotype Ontology (HPO) terms. It prioritizes variants by leveraging information on variant frequency, predicted pathogenicity, and gene-phenotype associations derived from human diseases, model organisms, and protein–protein interactions. Early published releases of Exomiser were able to prioritize disease-causative variants as top candidates in up to 97% of simulated whole-exomes. The size of the tested real patient datasets published so far are very limited. Here, we present the latest Exomiser version 12.0.1 with many new features. We assessed the performance using a set of 134 whole-exomes from patients with a range of rare retinal diseases and known molecular diagnosis. Using default settings, Exomiser ranked the correct diagnosed variants as the top candidate in 74% of the dataset and top 5 in 94%; not using the patients’ HPO profiles (i.e., variant-only analysis) decreased the performance to 3% and 27%, respectively. In conclusion, Exomiser is an effective support tool for rare Mendelian phenotype-driven variant prioritizatio

    Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles

    Get PDF
    There is an increasing interest in exploring clinically relevant information that is present in body fluids, and extracellular vesicles (EVs) are intrinsic components of body fluids (?liquid biopsies?). In this report, we will focus on blood. Blood contains not only EVs but also cells, and non-EV particles including lipoproteins. Due to the high concentration of soluble proteins and lipoproteins, blood, plasma and serum have a high viscosity and density, which hampers the concentration, isolation and detection of EVs. Because most if not all studies on EVs are single-centre studies, their clinical relevance remains limited. Therefore, there is an urgent need to improve standardization and reproducibility of EV research. As a first step, the International Society on Extracellular Vesicles organized a biomarker workshop in Birmingham (UK) in November 2017, and during that workshop several working groups were created to focus on a particular body fluid. This report is the first output of the blood EV work group and is based on responses by work group members to a questionnaire in order to discover the contours of a roadmap. From the answers it is clear that most respondents are in favour of evidence-based research, education, quality control procedures, and physical models to improve our understanding and comparison of concentration, isolation and detection methods. Since blood is such a complex body fluid, we assume that the outcome of the survey may also be valuable for exploring body fluids other than blood.Non peer reviewe

    Roadblocks of Urinary EV Biomarkers:Moving Toward the Clinic

    Get PDF
    Despite remarkable interest in the biomarker potential of urinary extracellular vesicles (uEVs) and the identification of numerous promising candidates, their clinical translation still presents multiple challenges. The opportunities for successful translation are obvious, yet the main roadblocks on the way have hardly been systematically considered and more coordinated approaches are needed to overcome them. In the present review article, we have identified the most relevant roadblocks of clinical translation of urinary EV-based biomarkers and discuss possible solutions to overcome them. These roadblocks are categorized as fundamental and technical but also related to development of novel biomarker assays and clinical acceptance. In addition, hurdles within the regulatory approval process are discussed. It is clear that various roadblocks to clinical translation of urinary EV biomarkers exist; however, they are addressable by promoting rigor and reproducibility as well as collaboration between basic and clinical scientists, clinicians, industry and regulatory bodies. Moreover, knowledge of obstacles for assay development and regulatory requirements should already be considered when developing a new biomarker to maximize the chance of successful translation. This review presents not only a status quo, but also a roadmap for the further development of the field.</p
    corecore