1,682 research outputs found
Erratum: "Post-T Tauri Stars in the Nearest OB Association" (AJ, 124, 1670 [2002])
A few typos in Mamajek, Meyer, & Liebert (2002, AJ, 124, 1670) have been
corrected in this erratum (including two stellar misidentifications and an
incorrect power in the units of a slope). The most significant is the
correction of a sign error in the published polynomial conversion between Tycho
and Johnson-Cousins (B-V) colors.Comment: 1 page, to appear in April 2006 Astronomical Journa
The True Incidence of Magnetism among Field White Dwarfs
We study the incidence of magnetism in white dwarfs from three large and
well-observed samples of hot, cool, and nearby white dwarfs in order to test
whether the fraction of magnetic degenerates is biased, and whether it varies
with effective temperature, cooling age, or distance. The magnetic fraction is
considerably higher for the cool sample of Bergeron, Ruiz, and Leggett, and the
Holberg, Oswalt, and Sion sample of local white dwarfs that it is for the
generally-hotter white dwarfs of the Palomar Green Survey. We show that the
mean mass of magnetic white dwarfs in this survey is 0.93 solar masses or more,
so there may be a strong bias against their selection in the magnitude-limited
Palomar Green Survey. We argue that this bias is not as important in the
samples of cool and nearby white dwarfs. However, this bias may not account for
all of the difference in the magnetic fractions of these samples.
It is not clear that the magnetic white dwarfs in the cool and local samples
are drawn from the same population as the hotter PG stars. In particular, two
or threee of the cool sample are low-mass white dwarfs in unresolved binary
systems. Moreover, there is a suggestion from the local sample that the
fractional incidence may increase with decreasing temperature, luminosity,
and/or cooling age. Overall, the true incidence of magnetism at the level of 2
megagauss or greater is at least 10%, and could be higher. Limited studies
capable of detecting lower field strengths down to 10 kilogauss suggest by
implication that the total fraction may be substantially higher than 10%.Comment: 16 pages, 2 figures, Astronomical Journal in press -- Jan 2003 issu
Recommended from our members
SDSS J142625.71+575218.3: A Prototype for A New Class of Variable White Dwarf
We present the results of a search for pulsations in six of the recently discovered carbon-atmosphere white dwarf ("hot DQ") stars. On the basis of our theoretical calculations, the star SDSS J142625.71 + 575218.3 is the only object expected to pulsate. We observe this star to be variable, with significant power at 417.7 s and 208.8 s ( first harmonic), making it a strong candidate as the first member of a new class of pulsating white dwarf stars, the DQVs. Its folded pulse shape, however, is quite different from that of other white dwarf variables and shows similarities with that of the cataclysmic variable AM CVn, raising the possibility that this star may be a carbon-transferring analog of AM CVn stars. In either case, these observations represent the discovery of a new and exciting class of object.NSF AST-0507639, AST-0602288, AST-0607480, AST-0307321Astronom
Pulsation in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology
We present some of the results of a survey aimed at exploring the
asteroseismological potential of the newly-discovered carbon-atmosphere white
dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere
white dwarfs may drive low-order gravity modes. We demonstrate that our
theoretical results are consistent with the recent exciting discovery of
luminosity variations in SDSS J1426+5752 and some null results obtained by a
team of scientists at McDonald Observatory. We also present follow-up
photometric observations carried out by ourselves at the Mount Bigelow 1.6-m
telescope using the new Mont4K camera. The results of follow-up spectroscopic
observations at the MMT are also briefly reported, including the surprising
discovery that SDSS J1426+5752 is not only a pulsating star but that it is also
a magnetic white dwarf with a surface field near 1.2 MG. The discovery of
-mode pulsations in SDSS J1426+5752 is quite significant in itself as it
opens a fourth asteroseismological "window", after the GW Vir, V777 Her, and ZZ
Ceti families, through which one may study white dwarfs.Comment: 7 pages, 4 figures, to appear in Journal of Physics Conference
Proceedings for the 16th European White Dwarf Worksho
On high proper motion white dwarfs from photographic surveys
The interpretation of high proper motion white dwarfs detected by Oppenheimer
et al (2001) was the start of a lively controversy. While the discoverers
identify a large fraction of their findings as dark halo members, others
interpret the same sample as essentially made of disc and/or thick disc stars.
We use the comprehensive description of Galactic stellar populations provided
by the "Besancon" model to produce a realistic simulation of Oppenheimer et al.
data, including all observational selections and calibration biases. The
conclusion is unambiguous: Thick disc white dwarfs resulting from ordinary
hypotheses on the local density and kinematics are sufficient to explain the
observed objects, there is no need for halo white dwarfs. This conclusion is
robust to reasonable changes in model ingredients. The main cause of the
misinterpretation seems to be that the velocity distribution of a proper motion
selected star sample is severely biased in favour of high velocities. This has
been neglected in previous analyses. Obviously this does not prove that no such
objects like halo white dwarfs can exist, but Oppenheimer et al. observations
drive their possible contribution in the dark matter halo down to an extremely
low fraction.Comment: 4 pages, 1 figure, A&A Letters, accepte
The white dwarf luminosity function. I. Statistical errors and alternatives
Over the years, several methods have been proposed to compute galaxy
luminosity functions, from the most simple ones -counting sample objects inside
a given volume- to very sophisticated ones -like the C- method, the STY method
or the Choloniewski method, among others. However, only the V/Vmax method is
usually employed in computing the white dwarf luminosity function and other
methods have not been applied so far to the observational sample of
spectroscopically identified white dwarfs. Moreover, the statistical
significance of the white dwarf luminosity function has also received little
attention and a thorough study still remains to be done. In this paper we
study, using a controlled synthetic sample of white dwarfs generated using a
Monte Carlo simulator, which is the statistical significance of the white dwarf
luminosity function and which are the expected biases. We also present a
comparison between different estimators for computing the white dwarf
luminosity function. We find that for sample sizes large enough the V/Vmax
method provides a reliable characterization of the white dwarf luminosity
function, provided that the input sample is selected carefully. Particularly,
the V/Vmax method recovers well the position of the cut-off of the white dwarf
luminosity function. However, this method turns out to be less robust than the
Choloniewski method when the possible incompletenesses of the sample are taken
into account. We also find that the Choloniewski method performs better than
the V/Vmax method in estimating the overall density of white dwarfs, but misses
the exact location of the cut-off of the white dwarf luminosity function.Comment: 14 pages, 12 figures, accepted for publication in MNRA
Magnetic White Dwarfs from the SDSS II. The Second and Third Data Releases
Fifty-two magnetic white dwarfs have been identified in spectroscopic
observations from the Sloan Digital Sky Survey (SDSS) obtained between mid-2002
and the end of 2004, including Data Releases 2 and 3. Though not as numerous
nor as diverse as the discoveries from the first Data Release, the collection
exhibits polar field strengths ranging from 1.5MG to ~1000MG, and includes two
new unusual atomic DQA examples, a molecular DQ, and five stars that show
hydrogen in fields above 500MG. The highest-field example, SDSSJ2346+3853, may
be the most strongly magnetic white dwarf yet discovered. Analysis of the
photometric data indicates that the magnetic sample spans the same temperature
range as for nonmagnetic white dwarfs from the SDSS, and support is found for
previous claims that magnetic white dwarfs tend to have larger masses than
their nonmagnetic counterparts. A glaring exception to this trend is the
apparently low-gravity object SDSSJ0933+1022, which may have a history
involving a close binary companion.Comment: 20 pages, 4 figures Accepted for publication in the Astronomical
Journa
A Comprehensive Spectroscopic Analysis of DB White Dwarfs
We present a detailed analysis of 108 helium-line (DB) white dwarfs based on
model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a
mean mass of 0.67 Mo for our sample, with a dispersion of only 0.09 Mo. White
dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample,
and their mass distribution appears similar to that of DB stars. As in our
previous investigation, we find no evidence for the existence of low-mass (M <
0.5 Mo) DB white dwarfs. We derive a luminosity function based on a subset of
DB white dwarfs identified in the Palomar-Green survey. We show that 20% of all
white dwarfs in the temperature range of interest are DB stars, although the
fraction drops to half this value above Teff ~ 20,000 K. We also show that the
persistence of DB stars with no hydrogen features at low temperatures is
difficult to reconcile with a scenario involving accretion from the
interstellar medium, often invoked to account for the observed hydrogen
abundances in DBA stars. We present evidence for the existence of two different
evolutionary channels that produce DB white dwarfs: the standard model where DA
stars are transformed into DB stars through the convective dilution of a thin
hydrogen layer, and a second channel where DB stars retain a helium-atmosphere
throughout their evolution. We finally demonstrate that the instability strip
of pulsating V777 Her white dwarfs contains no nonvariables, if the hydrogen
content of these stars is properly accounted for.Comment: 74 pages including 30 figures, accepted for publication in the
Astrophysical Journa
- …
