17,946 research outputs found
Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries
Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4\u27s suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissuespecific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly. 2017 © The Authors, some rights reserved
Calibration and Irradiation Study of the BGO Background Monitor for the BEAST II Experiment
Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism
for A STable experiment II (BEAST II) project is particularly designed to
measure the beam backgrounds around the interaction point of the SuperKEKB
collider for the Belle II experiment. We develop a system using bismuth
germanium oxide (BGO) crystals with optical fibers connecting to a multianode
photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA)
embedded readout board for monitoring the real-time beam backgrounds in BEAST
II. The overall radiation sensitivity of this system is estimated to be
Gy/ADU (analog-to-digital unit) with the standard
10 m fibers for transmission and the MAPMT operating at 700 V. Our -ray
irradiation study of the BGO system shows that the exposure of BGO crystals to
Co -ray doses of 1 krad has led to immediate light output
reductions of 25--40%, and the light outputs further drop by 30--45% after the
crystals receive doses of 2--4 krad. Our findings agree with those of the
previous studies on the radiation hard (RH) BGO crystals grown by the low
thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the
BGO system is also consistent with the simulation, and is estimated to be about
1.18 times the equivalent dose. These results prove that the BGO system is able
to monitor the background dose rate in real time under extreme high radiation
conditions. This study concludes that the BGO system is reliable for the beam
background study in BEAST II
Gravitational Waves from Phase-Transition Induced Collapses of Neutron Stars
We study the gravitational wave signals emitted from phase-transition induced collapses of rapidly rotating neutron stars to strange stars by performing 3D numerical simulations. Our preliminary results suggest that the complete conversion of neutron stars to strange stars would occur within a fraction of millisecond. We also find that the gravitational waves generated from the collapse process may be detectable by the advanced LIGO for reasonable source distance. In addition, the study such gravitational wave signals would put useful constraint on the parameters of QCD
One-Loop Effect of Null-Like Cosmology's Holographic Dual Super-Yang-Mills
We calculate the 1-loop effect in super-Yang-Mills which preserves
1/4-supersymmetries and is holographically dual to the null-like cosmology with
a big-bang singularity. Though the bosonic and fermionic spectra do not agree
precisely, we do obtain vanishing 1-loop vacuum energy for generic warped
plane-wave type backgrounds with a big-bang singularity. Moreover, we find that
the cosmological "constant" contributed either by bosons or fermions is
time-dependent. The issues about the particle production of some background and
about the UV structure are also commented. We argue that the effective higher
derivative interactions are suppressed as long as the Fourier transform of the
time-dependent coupling is UV-finite. Our result holds for scalar
configurations that are BPS but with arbitrary time-dependence. This suggests
the existence of non-renormalization theorem for such a new class of
time-dependent theories. Altogether, it implies that such a super-Yang-Mills is
scale-invariant, and that its dual bulk quantum gravity might behave regularly
near the big bang.Comment: 20 pages, v2 add comments and references, v3 clarify BPS condition &
add new discussion on particle production and UV structure, v4&v5 minor
changes, final to JHE
Selective interlayer ferromagnetic coupling between the Cu spins in YBa Cu O grown on top of La Ca MnO
Studies to date on ferromagnet/d-wave superconductor heterostructures focus
mainly on the effects at or near the interfaces while the response of bulk
properties to heterostructuring is overlooked. Here we use resonant soft x-ray
scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between
the in-plane Cu spins in YBa Cu O (YBCO) superconductor when it
is grown on top of ferromagnetic La Ca MnO (LCMO) manganite
layer. This coupling, present in both normal and superconducting states of
YBCO, is sensitive to the interfacial termination such that it is only observed
in bilayers with MnO_2but not with La Ca interfacial
termination. Such contrasting behaviors, we propose, are due to distinct
energetic of CuO chain and CuO plane at the La Ca and
MnO terminated interfaces respectively, therefore influencing the transfer
of spin-polarized electrons from manganite to cuprate differently. Our findings
suggest that the superconducting/ferromagnetic bilayers with proper interfacial
engineering can be good candidates for searching the theorized
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the
competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different
from the published versio
Nonmagnetic impurity perturbation to the quasi-two-dimensional quantum helimagnet LiCu2O2
A complete phase diagram of Zn substituted quantum quasi-two-dimensional
helimagnet LiCu2O2 has been presented. Helical ordering transition temperature
(T_h) of the original LiCu2O2 follows finite size scaling for less than ~ 5.5%
Zn substitution, which implies the existence of finite helimagnetic domains
with domain boundaries formed with nearly isolated spins. Higher Zn
substitution > 5.5% quenches the long-range helical ordering and introduces an
intriguing Zn level dependent magnetic phase transition with slight thermal
hysteresis and a universal quadratic field dependence for T_c (Zn > 0.055,H).
The magnetic coupling constants of nearest-neighbor (nn) J1 and
next-nearest-neighbor (nnn) J2 (alpha=J2/J1) are extracted from high
temperature series expansion (HTSE) fitting and N=16 finite chain exact
diagonalization simulation. We have also provided evidence of direct
correlation between long-range helical spin ordering and the magnitude of
electric polarization in this spin driven multiferroic material
Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis
The gut commensal Bacteroides fragilis or its capsular polysaccharide A (PSA) can prevent various peripheral and CNS sterile inflammatory disorders. Fatal herpes simplex encephalitis (HSE) results from immune pathology caused by uncontrolled invasion of the brainstem by inflammatory monocytes and neutrophils. Here we assess the immunomodulatory potential of PSA in HSE by infecting PSA or PBS treated 129S6 mice with HSV1, followed by delayed Acyclovir (ACV) treatment as often occurs in the clinical setting. Only PSA-treated mice survived, with dramatically reduced brainstem inflammation and altered cytokine and chemokine profiles. Importantly, PSA binding by B cells is essential for induction of regulatory CD4+ and CD8+ T cells secreting IL-10 to control innate inflammatory responses, consistent with the lack of PSA mediated protection in Rag−/−, B cell- and IL-10-deficient mice. Our data reveal the translational potential of PSA as an immunomodulatory symbiosis factor to orchestrate robust protective anti-inflammatory responses during viral infections
- …
