3,911 research outputs found
A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation
We give a short proof of asymptotic completeness and global existence for the
cubic Nonlinear Klein-Gordon equation in one dimension. Our approach to dealing
with the long range behavior of the asymptotic solution is by reducing it, in
hyperbolic coordinates to the study of an ODE. Similar arguments extend to
higher dimensions and other long range type nonlinear problems.Comment: To appear in Lett. Math. Phy
Correlations in optically-controlled quantum emitters
We address the problem of optically controlling and quantifying the
dissipative dynamics of quantum and classical correlations in a set-up of
individual quantum emitters under external laser excitation. We show that both
types of correlations, the former measured by the quantum discord, are present
in the system's evolution even though the emitters may exhibit an early stage
disentanglement. In the absence of external laser pumping,we demonstrate
analytically, for a set of suitable initial states, that there is an entropy
bound for which quantum discord and entanglement of the emitters are always
greater than classical correlations, thus disproving an early conjecture that
classical correlations are greater than quantum correlations. Furthermore, we
show that quantum correlations can also be greater than classical correlations
when the system is driven by a laser field. For scenarios where the emitters'
quantum correlations are below their classical counterparts, an optimization of
the evolution of the quantum correlations can be carried out by appropriately
tailoring the amplitude of the laser field and the emitters' dipole-dipole
interaction. We stress the importance of using the entanglement of formation,
rather than the concurrence, as the entanglement measure, since the latter can
grow beyond the total correlations and thus give incorrect results on the
actual system's degree of entanglement.Comment: 11 pages, 10 figures, this version contains minor modifications; to
appear in Phys. Rev.
Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint
In this paper it was proved that the quantum relative entropy can be asymptotically attained by Kullback Leibler divergences of
probabilities given by a certain sequence of POVMs. The sequence of POVMs
depends on , but is independent of the choice of .Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment
for Quantum Relative Entropy
Kinematic approach to the mixed state geometric phase in nonunitary evolution
A kinematic approach to the geometric phase for mixed quantal states in
nonunitary evolution is proposed. This phase is manifestly gauge invariant and
can be experimentally tested in interferometry. It leads to well-known results
when the evolution is unitary.Comment: Minor changes; journal reference adde
Steady state entanglement in open and noisy quantum systems at high temperature
We show that quantum mechanical entanglement can prevail even in noisy open
quantum systems at high temperature and far from thermodynamical equilibrium,
despite the deteriorating effect of decoherence. The system consists of a
number N of interacting quantum particles, and it can interact and exchange
particles with some environment. The effect of decoherence is counteracted by a
simple mechanism, where system particles are randomly reset to some standard
initial state, e.g. by replacing them with particles from the environment. We
present a master equation that describes this process, which we can solve
analytically for small N. If we vary the interaction strength and the reset
against decoherence rate, we find a threshold below which the equilibrium state
is classically correlated, and above which there is a parameter region with
genuine entanglement.Comment: 5 pages, 3 figure
Nonequilibrium entropy production for open quantum systems
We consider open quantum systems weakly coupled to a heat reservoir and
driven by arbitrary time-dependent parameters. We derive exact microscopic
expressions for the nonequilibrium entropy production and entropy production
rate, valid arbitrarily far from equilibrium. By using the two-point energy
measurement statistics for system and reservoir, we further obtain a quantum
generalization of the integrated fluctuation theorem put forward by Seifert
[PRL 95, 040602 (2005)].Comment: 4 pages, 1 figur
Determination of the noise parameters in a one-dimensional open quantum system
We consider an electron magnetically interacting with a spin-1/2 impurity,
embedded in an external environment whose noisy term acts only on the
impurity's spin, and we find expressions for the electron transmission and
reflection probabilities in terms of the phenomenological noise parameters.
Moreover, we give a simple example of the necessity of complete positivity for
physical consistency, showing that a positive but not completely positive
dissipative map can lead to negative transmission probabilities
Pure Stationary States of Open Quantum Systems
Using Liouville space and superoperator formalism we consider pure stationary
states of open and dissipative quantum systems. We discuss stationary states of
open quantum systems, which coincide with stationary states of closed quantum
systems. Open quantum systems with pure stationary states of linear oscillator
are suggested. We consider stationary states for the Lindblad equation. We
discuss bifurcations of pure stationary states for open quantum systems which
are quantum analogs of classical dynamical bifurcations.Comment: 7p., REVTeX
- …
