4,095 research outputs found

    Copernicus observations of C I and CO in diffuse interstellar clouds

    Get PDF
    Copernicus was used to observe absorption lines of C I in its ground state and excited fine structure levels and CO toward 29 stars. We use the C I data to infer densities and pressures within the observed clouds, and because our results are of higher precision than previous work, much more precise estimates of the physical conditions in clouds are obtained. In agreement with previous work, the interstellar thermal pressure appears to be variable, with most clouds having values of p/k between 1000/cu cm K and 10,000/cu cm K, but there are some clouds with p/k as high as 100,000/cu cm K. Our results are consistent with the view that the interstellar thermal pressure is so variable that the gas undergoes continuous dynamic evolution. Our observations provide useful constraints on the physical processes on the surfaces of grains. In particular, we find that grains are efficient catalysts of interstellar H2 in the sense that at least half of the hydrogen atoms that strike grains come off as part of H2. Results place strong constraints on models for the formation and destruction of interstellar CO. In many clouds, an order of magnitude less CO than predicted in some models was found

    Strong Turbulence in the Cool Cores of Galaxy Clusters: Can Tsunamis Solve the Cooling Flow Problem?

    Full text link
    Based on high-resolution two-dimensional hydrodynamic simulations, we show that the bulk gas motions in a cluster of galaxies, which are naturally expected during the process of hierarchical structure formation of the universe, have a serous impact on the core. We found that the bulk gas motions represented by acoustic-gravity waves create local but strong turbulence, which reproduces the complicated X-ray structures recently observed in cluster cores. Moreover, if the wave amplitude is large enough, they can suppress the radiative cooling of the cores. Contrary to the previous studies, the heating is operated by the turbulence, not weak shocks. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.Comment: Movies are available at http://th.nao.ac.jp/tsunami/index.ht

    Groups and the Entropy Floor- XMM-Newton Observations of Two Groups

    Full text link
    Using XMM-Newton spatially resolved X-ray imaging spectroscopy we obtain the temperature, density, entropy, gas mass, and total mass profiles for two groups of galaxies out to ~0.3 Rvir (Rvir, the virial radius). Our density profiles agree well with those derived previously, and the temperature data are broadly consistent with previous results but are considerably more precise. Both of these groups are at the mass scale of 2x10^13 Msolar but have rather different properties. They have considerably lower gas mass fractions at r<0.3 Rvir than the rich clusters. NGC2563, one of the least luminous groups for its X-ray temperature, has a very low gas mass fraction of ~0.004 inside 0.1 Rvir, which rises with radius. NGC4325, one of the most luminous groups at the same average temperature, has a higher gas mass fraction of 0.02. The entropy profiles and the absolute values of the entropy as a function of virial radius also differ, with NGC4325 having a value of ~100 keV cm-2 and NGC2563 a value of ~300 keV cm-2 at r~0.1 Rvir. For both groups the profiles rise monotonically with radius and there is no sign of an entropy "floor". These results are inconsistent with pre-heating scenarios which have been developed to explain the entropy floor in groups but are broadly consistent with models of structure formation which include the effects of heating and/or the cooling of the gas. The total entropy in these systems provides a strong constraint on all models of galaxy and group formation, and on the poorly defined feedback process which controls the transformation of gas into stars and thus the formation of structure in the universe.Comment: 22 pages, 2 figure

    RXTE Hard X-ray Observation of A754: Constraining the Hottest Temperature Component and the Intracluster Magnetic Field

    Full text link
    Abell 754, a cluster undergoing merging, was observed in hard X-rays with the Rossi X-ray Timing Explorer (RXTE) in order to constrain its hottest temperature component and search for evidence of nonthermal emission. Simultaneous modeling of RXTE data and those taken with previous missions yields an average intracluster temperature of 9\sim 9 keV in the 1-50 keV energy band. A multi-temperature component model derived from numerical simulations of the evolution of a cluster undergoing a merger produces similar quality of fit, indicating that the emission measure from the very hot gas component is sufficiently small that it renders the two models indistinguishable. No significant nonthermal emission was detected. However, our observations set an upper limit of 7.1×1014ergs/(cm2skeV)7.1 \times 10^{-14} ergs/(cm^2 s keV) (90% confidence limit) to the nonthermal emission flux at 20 keV. Combining this result with the radio synchrotron emission flux we find a lower limit of 0.2 μ\muG for the intracluster magnetic field. We discuss the implications of our results for the theories of magnetic field amplifications in cluster mergers.Comment: Accepted for Publication in the Astrophysical Journal, 22 pages, 5 figure

    On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    Get PDF
    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the build-up of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are consistent with observations in the field, cluster Fe enrichment immediately tracks a rapid, top-heavy phase of star formation -- although transport of Fe into the ICM may be more prolonged and star formation likely continues to redshifts <1. The source of this prompt enrichment is Type II supernovae (SNII) yielding at least 0.1 solar masses per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3-8 solar mass range) and/or SNIa explosions with short delay times associated with the rapid star formation mode. Star formation is >3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.Comment: 51 pages including 26 figures and 2 tables, accepted for publication in ApJ 5/4/0

    Small scale structure and mixing at the edge of the Antarctic vortex

    Get PDF
    Small scale correlations and patterns in the chemical tracers measured from the NASA ER-2 aircraft in the 1987 AAOE campaign can be used to investigate the structure of the edge of the polar vortex and the chemically perturbed region within it. Examples of several types of transport processes can be found in the data. Since ClO and O3 have similar vertical gradients and opposite horizontal gradients near the chemically perturbed region, the correlation between ClO and O3 can be used to study the extent of horizontal transport at the edge of the chemically perturbed region. Horizontal transport dominates the correlation for a latitude band up to 4 degrees on each side of the boundary. This implies a transition zone containing a substantial fraction of the mass of the total polar vortex. Similar horizontal transport can be seen in other tracers as well. It has not been possible to distinguish reversible transport from irreversible mixing. One manifestation of the horizontal transport is that the edge of the chemically perturbed region is often layered rather than a vertical curtain. This can be seen from the frequent reversed vertical gradients of NO2, caused by air with high NO2 overlapping layers with lower mixing ratios. Water and NO2 are positively correlated within the chemically perturbed region. This is the opposite sign to the correlation in the unperturbed stratosphere. The extent of the positive correlation is too great to be attributed solely to horizontal mixing. Instead, it is hypothesized that dehydration and descent are closely connected on a small scale, possibly due to radiative cooling of the clouds that also cause ice to fall to lower altitudes

    Southern Hemispheric nitrous oxide measurements obtained during 1987 airborne Antarctic ozone experiment

    Get PDF
    The chemical lifetime of N2O is about 150 years, which makes it an excellent dynamical tracer of air motion on the time scale of the ozone depletion event. For these reasons it was chosen to help test whether dynamical theories of ozone loss over Antarctica were plausible, particularly the theory that upwelling ozone-poor air from the troposphere was replacing ozone-rich stratospheric air. The N2O measurements were made with the Airborne Tunable Laser Absorption Spectrometer (ATLAS) aboard the NASA ER-2 aircraft. The detection technique involves measuring the diffential absorption of the IR laser radiation as it is rapidly scanned over an N2O absorption feature. For the AAOE mission, the instrument was capable of making measurements with a 1 ppb sensitivity, 1 second response time, over an altitude range of 10 to 20 kilometers. The AAOE mission consisted of a series of 12 flights from Punta Arenas (53S) into the polar vortex (approximately 72S) at which time a vertical profile from 65 to 45 km and back was performed. Comparison of the observed profiles inside the vortex with N2O profiles obtained by balloon flights during the austral summer showed that an overall subsidence had occurred during the winter of about 5 to 6 km. Also, over the course of the mission (mid-August to late September), no trend in the N2O vertical profile, either upward or downward, was discernible, eliminating the possibility that upwelling was the cause of the observed ozone decrease

    Thermal conduction and particle transport in strong MHD turbulence, with application to galaxy-cluster plasmas

    Full text link
    We investigate field-line separation in strong MHD turbulence analytically and with direct numerical simulations. We find that in the static-magnetic-field approximation the thermal conductivity in galaxy clusters is reduced by a factor of about 5-10 relative to the Spitzer thermal conductivity of a non-magnetized plasma. We also estimate how the thermal conductivity would be affected by efficient turbulent resistivity.Comment: Major revision: higher resolution simulations lead to significantly different conclusions. 26 pages, 10 figure

    X-ray Evidence for Spectroscopic Diversity of Type Ia Supernovae: XMM observation of the elemental abundance pattern in M87

    Full text link
    We present the results of a detailed element abundance study of hot gas in M87, observed by XMM-Newton. We choose two radial bins, 1'-3' and 8'-16' (8'-14' for EMOS; hereafter the central and the outer zones), where the temperature is almost constant, to carry out the detailed abundance measurements of O, Ne, Mg, Si, S, Ar, Ca, Fe and Ni using EPIC-PN (EPN) and -MOS (EMOS) data. First, we find that the element abundance pattern in the central compared to the outer zone in M87 is characterized by SN Ia enrichment of a high (roughly solar) ratio of Si-group elements (Si, S, Ar, Ca) to Fe, implying that Si burning in SN Ia is highly incomplete. In nucleosynthesis modeling this is associated with either a lower density of the deflagration-detonation transition and/or lower C/O and/or lower central ignition density and observationally detected as optically subluminous SNe Ia in early-type galaxies. Second, we find that SN Ia enrichment has a systematically lower ratio of the Si-group elements to Fe by 0.2 dex in the outer zone associated with the ICM of the Virgo cluster. We find that such a ratio and even lower values by another 0.1 dex are a characteristic of the ICM in many clusters using observed Si:S:Fe ratios as found with ASCA. Third, the Ni/Fe ratio in the central zone of M87 is 1.5+/-0.3 solar (meteoritic), while values around 3 times solar are reported for other clusters. In modeling of SN Ia, this implies a reduced influence of fast deflagration SN Ia models in the chemical enrichment of M87's ISM. Thus, to describe the SN Ia metal enrichment in clusters, both deflagration as well as delayed detonation scenarios are required, supporting a similar conclusion, derived from optical studies on SNe Ia. Abridged.Comment: 11 pages, A&A, in pres
    corecore