1,598 research outputs found
Superconducting magnesium diboride films on Silicon with Tc0 about 24K grown via vacuum annealing from stoichiometric precursors
Superconducting magnesium diboride films with Tc0 ~ 24 K and sharp transition
\~ 1 K were successfully prepared on silicon substrates by pulsed laser
deposition from a stoichiometric MgB2 target. Contrary to previous reports,
anneals at 630 degree and a background of 2x10^(-4) torr Ar/4%H2 were performed
without the requirement of Mg vapor or an Mg cap layer. This integration of
superconducting MgB2 films on silicon may thus prove enabling in
superconductor-semiconductor device applications. Images of surface morphology
and cross-section profiles by scanning electron microscopy (SEM) show that the
films have a uniform surface morphology and thickness. Energy dispersive
spectroscopy (EDS) reveals these films were contaminated with oxygen,
originating either from the growth environment or from sample exposure to air.
The oxygen contamination may account for the low Tc for those in-situ annealed
films, while the use of Si as the substrate does not result in a decrease in Tc
as compared to other substrates.Comment: 5 pages, 4 figures, 15 references; due to file size limit, images
were blure
Superconducting magnesium diboride films with Tc \approx 24K grown by pulsed laser deposition with in-situ anneal
Thin superconducting films of magnesium diboride (MgB2) with Tc \approx 24K
were prepared on various oxide substrates by pulsed laser deposition (PLD)
followed by an in-situ anneal. A systematic study of the influence of various
in-situ annealing parameters shows an optimum temperature of about 600C in a
background of 0.7 atm. of Ar/4%H2 for layers consisting of a mixture of
magnesium and boron. Contrary to ex-situ approaches (e.g. reacting boron films
with magnesium vapor at 900C), these films are processed below the
decomposition temperature of MgB2. This may prove enabling in the formation of
multilayers, junctions, and epitaxial films in future work. Issues related to
the improvement of these films and to the possible in-situ growth of MgB2 at
elevated temperature are discussed.Comment: 5 pages, 4 figure
An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas
A new method for continuous compositional-spread (CCS) thin-film fabrication
based on pulsed-laser deposition (PLD) is introduced. This approach is based on
a translation of the substrate heater and the synchronized firing of the
excimer laser, with the deposition occurring through a slit-shaped aperture.
Alloying is achieved during film growth (possible at elevated temperature) by
the repeated sequential deposition of sub-monolayer amounts. Our approach
overcomes serious shortcomings in previous in-situ implementations of CCS based
on sputtering or PLD, in particular the variations of thickness across the
compositional spread and the differing deposition energetics as function of
position. While moving-shutter techniques are appropriate for PLD-approaches
yielding complete spreads on small substrates (i.e. small as compared to
distances over which the deposition parameters in PLD vary, typically about 1
cm), our method can be used to fabricate samples that are large enough for
individual compositions to be analyzed by conventional techniques, including
temperature-dependent measurements of resistivity and dielectric and magnetic
and properties (i.e. SQUID magnetometry). Initial results are shown for spreads
of (Sr,Ca)RuO.Comment: 6 pages, 8 figures, accepted for publication in Rev. Sci. Instru
Liquid film thickness behaviour within a large diameter vertical 180° return bend
Experimental results of liquid film thickness distribution of an air–water mixture flowing through a vertical 180° return bend are reported. Measurements of liquid film thickness were achieved using flush mounted pin and parallel wire probes. The bend has a diameter of 127 mm and a curvature ratio (R/D) of 3. The superficial velocities of air ranged from 3.5 to 16.1 m/s and those for water from 0.02 to 0.2 m/s. At these superficial velocity ranges, the flow pattern investigated in this work focused on churn and annular flows. It was found that at liquid and gas superficial velocities of 0.02 m/s and 6.2 m/s, respectively, the averaged liquid film thickness peak at 90°. At gas superficial velocity of 16.1 m/s, the relationship between them is linear due to the shear forces overcoming gravity. Additionally, it was found that deposition of entrained droplets keeps the liquid film on the outside of the bend. The results of polar plots of average liquid film thickness in the bend showed that the distribution of the liquid film is not symmetrical with thicker films on the inside of the bend due to the action of gravity. Experimental results on average liquid film thickness showed good agreement with the simulation data reported in the literature
Observed Effects of a Changing Step-Edge Density on Thin-Film Growth Dynamics
We grew SrTiO3 on SrTiO3 [001] by pulsed laser deposition, while observing
x-ray diffraction at the (0 0 .5) position. The drop dI in the x-ray intensity
following a laser pulse contains information about plume-surface interactions.
Kinematic theory predicts dI/I = -4sigma(1-sigma), so that dI/I depends only on
the amount of deposited material sigma. In contrast, we observed experimentally
that |dI/I| < 4sigma(1-sigma), and that dI/I depends on the phase of x-ray
growth oscillations. The combined results suggest a fast smoothing mechanism
that depends on surface step-edge density.Comment: 4 figure
Prospects for local co-governance
British local authorities and their partners are increasingly developing new ways of working together with local communities. The nature of this co-working, however, is complex, multi-faceted and little understood. This article argues for greater clarity of thinking on the topic, by analysing this co-working as a form of political co-governance, and drawing attention in particular to issues of scale and democracy. Using evidence from a study of 43 local authority areas, 16 authorities are identified where co-governance is practised, following three main types of approach: service-influencing, service-delivering and parish council developing. It is concluded that strengthening political co-governance is essential for a healthy democracy
Applications of Artificial Neural Network (ANN) method for performance prediction of the effect of a vertical 90° bend on an air-silicone oil flow
Knowledge of how the presence of a bend can change the flow patterns of a gas–liquid mixture is important for the design of multiphase flow systems, particularly to prevent burn-out and erosion–corrosion. Burn-out and erosion–corrosion both have serious implications for heat and mass transfer. The objective of this work therefore is to train an artificial neural network (ANN), a powerful interpolation technique, to predict the effect of a vertical 90o bend on an air–silicone oil mixture over a wide range of flow rates. Experimental data for training, validation, testing and final prediction were obtained using advanced instrumentation, wire mesh sensor (WMS) and high speed camera. The performance of the models were evaluated using the mean square error (MSE), average absolute relative error (MAE), Chi square test (X2) and cross correlation coefficients (R). The performance discriminator X2 for prediction of average void fraction is 2.57e-5 and that for probability density function (PDF) of void fraction MAE is 0.0028 for best performing models. The well trained ANN is then used to predict the effects of the two input parameters individually. The predicted results show that for the before the bend scenario, the most effective input parameter that reflects a change in flow pattern is the gas superficial velocity. On the other hand, the most unfavourable output parameter to measure after the bend is the average void fraction based on the fact that the flow near the bend is a developing one
- …
