683 research outputs found
Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML
Pharmacological targeting of BTK using ibrutinib has recently shown encouraging clinical activity in a range of lymphoid malignancies. Recently we reported that ibrutinib inhibits human acute myeloid leukemia (AML) blast proliferation and leukemic cell adhesion to the surrounding bone marrow stroma cells. Here we report that in human AML ibrutinib, in addition, functions to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. It has previously been shown that SDF1/CXCR4-induced migration is dependent on activation of downstream BTK in chronic lymphocytic leukaemia (CLL) and multiple myeloma. Here we show that SDF-1 induces BTK phosphorylation and downstream MAPK signalling in primary AML blast. Furthermore, we show that ibrutinib can inhibit SDF1-induced AKT and MAPK activation. These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL
CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors
Transient electronics entails the capability of electronic components to dissolve or reabsorb in a controlled manner when used in biomedical implants. Here, the authors perform a systematic study of the processes of hydrolysis, bioabsorption, cytotoxicity and immunological biocompatibility of monolayer MoS2
Identification of Bruton's tyrosine kinase as a therapeutic target in acute myeloid leukemia
Bruton's tyrosine kinase (BTK) is a cytoplasmic protein found in all hematopoietic cell lineages except for T cells. BTK mediates signalling downstream of a number of receptors. Pharmacological targeting of BTK using ibrutinib (previously PCI-32765) has recently shown encouraging clinical activity in a range of lymphoid malignancies. This study reports for the first time that ibrutinib inhibits blast proliferation from human acute myeloid leukaemia (AML) and that treatment with ibrutinib significantly augmented cytotoxic activities of standard AML chemotherapy cytarabine or daunorubicin. Here we describe that BTK is constitutively phosphorylated in the majority of AML samples tested, with BTK phosphorylation correlating highly with the cell's cytotoxic sensitivity towards ibrutinib. BTK targeted RNAi knock-down reduced colony forming capacity of primary AML blasts and proliferation of AML cell lines. We showed ibrutinib binds at nanomolar range to BTK. Furthermore, we also showed ibrutinib's anti-proliferative effects in AML are mediated via an inhibitory effect on downstream nuclear factor-κB (NF-κB) survival pathways. Moreover, ibrutinib inhibited AML cell adhesion to bone marrow stroma. Furthermore, these effects of ibrutinib in AML were seen at comparable concentrations efficacious in chronic lymphocytic leukemia (CLL). These results provide a biologic rationale for clinical evaluation of BTK inhibition in AML patients
Ibrutinib inhibits BTK-driven NF-κB p65 activity to overcome bortezomib-resistance in multiple myeloma
Multiple Myeloma (MM) is a haematologic malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. Over the last 10-15 y the introduction of the proteasome-inhibitor bortezomib has improved MM prognosis, however relapse due to bortezomib-resistance is inevitable and the disease, at present, remains incurable. To model bortezomib-resistant MM we generated bortezomib-resistant MM cell lines (n = 4 ) and utilised primary malignant plasma cells from patients relapsing after bortezomib treatment (n = 6 ). We identified enhanced Bruton's tyrosine kinase (BTK) activity in bortezomib-resistant MM cells and found that inhibition of BTK, either pharmacologically with ibrutinib (0.5 μM) or via lenti-viral miRNA-targeted BTK interference, re-sensitized previously bortezomib-resistant MM cells to further bortezomib therapy at a physiologically relevant concentration (5 nM). Further analysis of pro-survival signaling revealed a role for the NF-κB p65 subunit in MM bortezomib-resistance, thus a combination of BTK and NF-κB p65 inhibition, either pharmacologically or via further lenti-viral miRNA NF-κB p65 interference, also restored sensitivity to bortezomib, significantly reducing cell viability (37.5 ± 6 .9 %, ANOVA P ≤ 0 .001). Accordingly, we propose the clinical evaluation of a bortezomib/ibrutinib combination therapy, including in patients resistant to single-agent bortezomib
NRF2-driven miR-125B1 and miR-29B1 transcriptional regulation controls a novel anti-apoptotic miRNA regulatory network for AML survival
Transcription factor NRF2 is an important regulator of oxidative stress. It is involved in cancer progression, and has abnormal constitutive expression in acute myeloid leukaemia (AML). Posttranscriptional regulation by microRNAs (miRNAs) can affect the malignant phenotype of AML cells. In this study, we identified and characterised NRF2-regulated miRNAs in AML. An miRNA array identified miRNA expression level changes in response to NRF2 knockdown in AML cells. Further analysis of miRNAs concomitantly regulated by knockdown of the NRF2 inhibitor KEAP1 revealed the major candidate NRF2-mediated miRNAs in AML. We identified miR-125B to be upregulated and miR-29B to be downregulated by NRF2 in AML. Subsequent bioinformatic analysis identified putative NRF2 binding sites upstream of the miR-125B1 coding region and downstream of the mir-29B1 coding region. Chromatin immunoprecipitation analyses showed that NRF2 binds to these antioxidant response elements (AREs) located in the 5′ untranslated regions of miR-125B and miR-29B. Finally, primary AML samples transfected with anti-miR-125B antagomiR or miR-29B mimic showed increased cell death responsiveness either alone or co-treated with standard AML chemotherapy. In summary, we find that NRF2 regulation of miR-125B and miR-29B acts to promote leukaemic cell survival, and their manipulation enhances AML responsiveness towards cytotoxic chemotherapeutics
GPR56/ADGRG1 regulates development and maintenance of peripheral myelin
Myelin is a multilamellar sheath generated by specialized glia called Schwann cells (SCs) in the peripheral nervous system (PNS), which serves to protect and insulate axons for rapid neuronal signaling. In zebrafish and rodent models, we identify GPR56/ADGRG1 as a conserved regulator of PNS development and health. We demonstrate that, during SC development, GPR56-dependent RhoA signaling promotes timely radial sorting of axons. In the mature PNS, GPR56 is localized to distinct SC cytoplasmic domains, is required to establish proper myelin thickness, and facilitates organization of the myelin sheath. Furthermore, we define plectin-a scaffolding protein previously linked to SC domain organization, myelin maintenance, and a series of disorders termed "plectinopathies"-as a novel interacting partner of GPR56. Finally, we show that Gpr56 mutants develop progressive neuropathy-like symptoms, suggesting an underlying mechanism for peripheral defects in some human patients with GPR56 mutations. In sum, we define Gpr56 as a new regulator in the development and maintenance of peripheral myelin
The presentation, clinical features, complications, and treatment of congenital dacryocystocele
Purpose To determine the incidence and presenting features of congenital dacryocystocele in the United Kingdom. To report on those cases complicated by dacryocystitis, respiratory compromise, and the treatment undertaken. Methods A prospective observational study of cases of congenital dacryocystocele presenting in the United Kingdom between September 2014 and October 2015. Infants <3 months of age presenting with a cystic swelling in the medial canthal area were included. Cases were identified via the British Ophthalmology Surveillance Unit (BOSU) reporting system. Results A total of 49 cases were reported during the study period. This gives an incidence of 1 in 18 597 live births. There was a 71% response rate to the questionnaire. The average age at presentation was 16.94 days. Dacryocystoceles were unilateral in 91% of cases. Dacryocystitis was a complicating factor in 49% of patients and 17% had respiratory distress. Uncomplicated dacryocystocele responded well to conservative measures in 86%. Surgical intervention was required in 23% of patients. Those cases complicated by dacryocystitis (29%) and nasal obstruction (17%) were more likely to require surgical intervention compared to those with dacryocystocele alone (14%). Digital massage appears to reduce the likelihood of requiring surgical intervention. The mean time to resolution was 19 days. Conclusions Congenital dacryocystocele is a rare presentation in the United Kingdom. Dacryocystitis and respiratory compromise commonly complicate a dacryocystocele. The use of digital massage as an early intervention is advocated and conservative measures may be sufficient in cases of uncomplicated dacryocystocele
- …
