12,280 research outputs found
Discrete Routh Reduction
This paper develops the theory of abelian Routh reduction for discrete
mechanical systems and applies it to the variational integration of mechanical
systems with abelian symmetry. The reduction of variational Runge-Kutta
discretizations is considered, as well as the extent to which symmetry
reduction and discretization commute. These reduced methods allow the direct
simulation of dynamical features such as relative equilibria and relative
periodic orbits that can be obscured or difficult to identify in the unreduced
dynamics. The methods are demonstrated for the dynamics of an Earth orbiting
satellite with a non-spherical correction, as well as the double
spherical pendulum. The problem is interesting because in the unreduced
picture, geometric phases inherent in the model and those due to numerical
discretization can be hard to distinguish, but this issue does not appear in
the reduced algorithm, where one can directly observe interesting dynamical
structures in the reduced phase space (the cotangent bundle of shape space), in
which the geometric phases have been removed. The main feature of the double
spherical pendulum example is that it has a nontrivial magnetic term in its
reduced symplectic form. Our method is still efficient as it can directly
handle the essential non-canonical nature of the symplectic structure. In
contrast, a traditional symplectic method for canonical systems could require
repeated coordinate changes if one is evoking Darboux' theorem to transform the
symplectic structure into canonical form, thereby incurring additional
computational cost. Our method allows one to design reduced symplectic
integrators in a natural way, despite the noncanonical nature of the symplectic
structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added,
fixed typo
Controllability and stabilizability of distributed bilinear systems: Recent results and open problems
This paper describes recent results for controlling and stabilizing control systems of the form ú(t) = Au(t) + p(t) B(u(t)) where A is the infinitesimal generator C∞ semigroup
on a Banach space X, B' map from X into X, and p(t) is a real valued control. Application to a vibrating beam problem is given for illusstration of the theory
Symplectic-energy-momentum preserving variational integrators
The purpose of this paper is to develop variational integrators for conservative mechanical systems that are symplectic and energy and momentum conserving. To do this, a space–time view of variational integrators is employed and time step adaptation is used to impose the constraint of conservation of energy. Criteria for the solvability of the time steps and some numerical examples are given
Variational integrators, the Newmark scheme, and dissipative systems
Variational methods are a class of symplectic-momentum integrators for ODEs. Using
these schemes, it is shown that the classical Newmark algorithm is structure preserving in a
non-obvious way, thus explaining the observed numerical behavior. Modifications to variational
methods to include forcing and dissipation are also proposed, extending the advantages
of structure preserving integrators to non-conservative systems
Matching and stabilization by the method of controlled Lagrangians
We describe a class of mechanical systems for which the “method of controlled Lagrangians” provides a family of control laws that stabilize an unstable (relative) equilibrium. The controlled Lagrangian approach involves making modifications to the Lagrangian for the uncontrolled system such that the Euler-Lagrange equations derived from the modified or “controlled” Lagrangian describe the closed-loop system. For the closed-loop equations to be consistent with available control inputs, the modifications to the Lagrangian must satisfy “matching” conditions. Our matching and stabilizability conditions are constructive; they provide the form of the controlled Lagrangian, the control law and, in some cases, conditions on the control gain(s) to ensure stability. The method is applied to stabilization of an inverted spherical pendulum on a cart and to stabilization of steady rotation of a rigid spacecraft about its unstable intermediate axis using an internal rotor
Model reduction, centering, and the Karhunen-Loeve expansion
We propose a new computationally efficient modeling method that captures a given translation symmetry in a system. To obtain a low order approximate system of ODEs, prior to performing a Karhunen Loeve expansion, we process the available data set using a “centering” procedure. This approach has been shown to be efficient in nonlinear scalar wave equations
The energy–momentum method for the stability of non-holonomic systems
In this paper we analyze the stability of relative equilibria of nonholonomic systems (that is, mechanical systems with nonintegrable constraints such as rolling constraints). In the absence of external dissipation, such systems conserve energy, but nonetheless can exhibit
both neutrally stable and asymptotically stable, as well as linearly unstable relative equilibria. To carry out the stability analysis, we use a generalization of the energy-momentum method combined with the Lyapunov-Malkin theorem and the center manifold theorem. While this approach is consistent with the energy-momentum method for
holonomic systems, it extends it in substantial ways. The theory is illustrated with several examples, including the the rolling disk, the roller racer, and the rattleback top
Frictional Collisions Off Sharp Objects
This work develops robust contact algorithms capable of dealing with multibody nonsmooth contact
geometries for which neither normals nor gap functions can be defined. Such situations arise
in the early stage of fragmentation when a number of angular fragments undergo complex collision
sequences before eventually scattering. Such situations precludes the application of most contact
algorithms proposed to date
Stabilization of Relative Equilibria II
In this paper, we obtain feedback laws to asymptotically stabilize relative equilibria of mechanical systems with symmetry. We use a notion of stability ‘modulo the group action’ developed by Patrick [1992]. We deal with both
internal instability and with instability of the rigid motion. The methodology is that of potential shaping, but the system is allowed to be internally underactuated,
i.e., have fewer internal actuators than the dimension of the shape space
Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media
We analyze frequency conversion and its control among three light waves using a geometric approach that enables the dynamics of the waves to be visualized on a closed surface in three dimensions. It extends the analysis based on the undepleted-pump linearization and provides a simple way to understand the fully nonlinear dynamics. The Poincaré sphere has been used in the same way to visualize polarization dynamics. A geometric understanding of control strategies that enhance energy transfer among interacting waves is introduced, and the quasi-phase-matching strategy that uses microstructured quadratic materials is illustrated in this setting for both type I and II second-harmonic generation and for parametric three-wave interactions
- …
