955 research outputs found
Detecting paired and counterflow superfluidity via dipole oscillations
We suggest an experimentally feasible procedure to observe paired and
counterflow superfluidity in ultra-cold atom systems. We study the time
evolution of one-dimensional mixtures of bosonic atoms in an optical lattice
following an abrupt displacement of an additional weak confining potential. We
find that the dynamic responses of the paired superfluid phase for attractive
inter-species interactions and the counterflow superfluid phase for repulsive
interactions are qualitatively distinct and reflect the quasi long-range order
that characterizes these states. These findings suggest a clear experimental
procedure to detect these phases, and give an intuitive insight into their
dynamics.Comment: 4 pages,5 figure
Mixing-Demixing transition in 1D boson-fermion mixture at low fermion densities
We numerically investigated the mixing-demixing transition of the
boson-fermion mixture on a 1D lattice at an incommensurate filling with the
fermion density being kept below the boson density. The phase diagram we
obtained suggested that the decrease of the number of the fermions drove the
system into the demixing phase
Bose-Fermi mixtures in 1D optical superlattices
The zero temperature phase diagram of binary boson-fermion mixtures in
two-colour superlattices is investigated. The eigenvalue problem associated
with the Bose-Fermi-Hubbard Hamiltonian is solved using an exact numerical
diagonalization technique, supplemented by an adaptive basis truncation scheme.
The physically motivated basis truncation allows to access larger systems in a
fully controlled and very flexible framework. Several experimentally relevant
observables, such as the matter-wave interference pattern and the
condensatefraction, are investigated in order to explore the rich phase
diagram. At symmetric half filling a phase similar to the Mott-insulating phase
in a commensurate purely bosonic system is identified and an analogy to recent
experiments is pointed out. Furthermore a phase of complete localization of the
bosonic species generated by the repulsive boson-fermion interaction is
identified. These localized condensates are of a different nature than the
genuine Bose-Einstein condensates in optical lattices.Comment: 18 pages, 9 figure
- …
