520 research outputs found

    Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities

    Get PDF
    Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions

    Ultralong-range polyatomic Rydberg molecules formed by a polar perturber

    Full text link
    The internal electric field of a Rydberg atom electron can bind a polar molecule to form a giant ultralong-range stable polyatomic molecule. Such molecules not only share their properties with Rydberg atoms, they possess huge permanent electric dipole moments and in addition allow for coherent control of the polar molecule orientation. In this work, we include additional Rydberg manifolds which couple to the nearly degenerate set of Rydberg states employed in [S. T. Rittenhouse and H. R. Sadeghpour, Phys. Rev. Lett. 104, 243002 (2010)]. The coupling of a set of (n+3)s(n+3)s Rydberg states with the n(l>2)n(l>2) nearly degenerate Rydberg manifolds in alkali metal atoms leads to pronounced avoided crossings in the Born-Oppenheimer potentials. Ultimately, these avoided crossings enable the formation of the giant polyatomic Rydberg molecules with standard two-photon laser photoassociation techniques.Comment: 7 pages, 4 figure

    Spectral properties of finite laser-driven lattices of ultracold Rydberg atoms

    Full text link
    We investigate the spectral properties of a finite laser-driven lattice of ultracold Rydberg atoms exploiting the dipole blockade effect in the frozen Rydberg gas regime. Uniform one-dimensional lattices as well as lattices with variable spacings are considered. In the case of a weak laser coupling, we find a multitude of many-body Rydberg states with well-defined excitation properties which are adiabatically accessible starting from the ground state. A comprehensive analysis of the degeneracies of the spectrum as well as of the single and pair excitations numbers of the eigenstates is performed. In the strong laser regime, analytical solutions for the pseudo-fermionic eigenmodes are derived. Perturbative energy corrections for this approximative approach are provided.Comment: 17 pages, 12 figure

    Impact of Electric Fields on Highly Excited Rovibrational States of Polar Dimers

    Get PDF
    We study the effect of a strong static homogeneous electric field on the highly excited rovibrational levels of the LiCs dimer in its electronic ground state. Our full rovibrational investigation of the system includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. We explore the evolution of the states next to the dissociation threshold as the field strength is increased. The rotational and vibrational dynamics are influenced by the field; effects such as orientation, angular motion hybridization and squeezing of the vibrational motion are demonstrated and analyzed. The field also induces avoided crossings causing a strong mixing of the electrically dressed rovibrational states. Importantly, we show how some of these highly excited levels can be shifted to the continuum as the field strength is increased, and reversely how two atoms in the continuum can be brought into a bound state by lowering the electric field strength.Comment: 10 pages, 4 figure

    Formation of Ultracold Heteronuclear Dimers in Electric Fields

    Full text link
    The formation of ultracold molecules via stimulated emission followed by a radiative deexcitation cascade in the presence of a static electric field is investigated. By analyzing the corresponding cross sections, we demonstrate the possibility to populate the lowest rotational excitations via photoassociation. The modification of the radiative cascade due to the electric field leads to narrow rotational state distributions in the vibrational ground state. External fields might therefore represent an additional valuable tool towards the ultimate goal of quantum state preparation of molecules

    Dressing of Ultracold Atoms by their Rydberg States in a Ioffe-Pritchard Trap

    Full text link
    We explore how the extraordinary properties of Rydberg atoms can be employed to impact the motion of ultracold ground state atoms. Specifically, we use an off-resonant two-photon laser dressing to map features of the Rydberg states on ground state atoms. It is demonstrated that the interplay between the spatially varying quantization axis of the considered Ioffe-Pritchard field and the fixed polarizations of the laser transitions provides the possibility of substantially manipulating the ground state trapping potential.Comment: 11 pages, 4 figure

    Binary Induced Neutron-Star Compression, Heating, and Collapse

    Get PDF
    We analyze several aspects of the recently noted neutron star collapse instability in close binary systems. We utilize (3+1) dimensional and spherical numerical general relativistic hydrodynamics to study the origin, evolution, and parametric sensitivity of this instability. We derive the modified conditions of hydrostatic equilibrium for the stars in the curved space of quasi-static orbits. We examine the sensitivity of the instability to the neutron star mass and equation of state. We also estimate limits to the possible interior heating and associated neutrino luminosity which could be generated as the stars gradually compress prior to collapse. We show that the radiative loss in neutrinos from this heating could exceed the power radiated in gravity waves for several hours prior to collapse. The possibility that the radiation neutrinos could produce gamma-ray (or other electromagnetic) burst phenomena is also discussed.Comment: 17 pages, 7 figure

    Instabilities in neutrino-plasma density waves

    Get PDF
    One examines the interaction and possible resonances between supernova neutrinos and electron plasma waves. The neutrino phase space distribution and its boundary regions are analyzed in detail. It is shown that the boundary regions are too wide to produce non-linear resonant effects. The growth or damping rates induced by neutrinos are always proportional to the neutrino flux and GF2G_{{\rm F}}^{2}.Comment: 9 pages, a few words modified to match PRD publicatio
    corecore