3,068 research outputs found

    Modified Regge calculus as an explanation of dark energy

    Full text link
    Using Regge calculus, we construct a Regge differential equation for the time evolution of the scale factor a(t)a(t) in the Einstein-de Sitter cosmology model (EdS). We propose two modifications to the Regge calculus approach: 1) we allow the graphical links on spatial hypersurfaces to be large, as in direct particle interaction when the interacting particles reside in different galaxies, and 2) we assume luminosity distance DLD_L is related to graphical proper distance DpD_p by the equation DL=(1+z)DpDpD_L = (1+z)\sqrt{\overrightarrow{D_p}\cdot \overrightarrow{D_p}}, where the inner product can differ from its usual trivial form. The modified Regge calculus model (MORC), EdS and Λ\LambdaCDM are compared using the data from the Union2 Compilation, i.e., distance moduli and redshifts for type Ia supernovae. We find that a best fit line through log(DLGpc)\displaystyle \log{(\frac{D_L}{Gpc})} versus logz\log{z} gives a correlation of 0.9955 and a sum of squares error (SSE) of 1.95. By comparison, the best fit Λ\LambdaCDM gives SSE = 1.79 using HoH_o = 69.2 km/s/Mpc, ΩM\Omega_{M} = 0.29 and ΩΛ\Omega_{\Lambda} = 0.71. The best fit EdS gives SSE = 2.68 using HoH_o = 60.9 km/s/Mpc. The best fit MORC gives SSE = 1.77 and HoH_o = 73.9 km/s/Mpc using R=A1R = A^{-1} = 8.38 Gcy and m=1.71×1052m = 1.71\times 10^{52} kg, where RR is the current graphical proper distance between nodes, A1A^{-1} is the scaling factor from our non-trival inner product, and mm is the nodal mass. Thus, MORC improves EdS as well as Λ\LambdaCDM in accounting for distance moduli and redshifts for type Ia supernovae without having to invoke accelerated expansion, i.e., there is no dark energy and the universe is always decelerating.Comment: 15 pages text, 6 figures. Revised as accepted for publication in Class. Quant. Gra

    End of a Dark Age?

    Full text link
    We argue that dark matter and dark energy phenomena associated with galactic rotation curves, X-ray cluster mass profiles, and type Ia supernova data can be accounted for via small corrections to idealized general relativistic spacetime geometries due to disordered locality. Accordingly, we fit THINGS rotation curve data rivaling modified Newtonian dynamics, ROSAT/ASCA X-ray cluster mass profile data rivaling metric-skew-tensor gravity, and SCP Union2.1 SN Ia data rivaling Λ\LambdaCDM without non-baryonic dark matter or a cosmological constant. In the case of dark matter, we geometrically modify proper mass interior to the Schwarzschild solution. In the case of dark energy, we modify proper distance in Einstein-deSitter cosmology. Therefore, the phenomena of dark matter and dark energy may be chimeras created by an errant belief that spacetime is a differentiable manifold rather than a disordered graph.Comment: This version was accepted for publication in the International Journal of Modern Physics D; revised version of an essay that won Honorable Mention in the Gravity Research Foundation 2016 Awards for Essays on Gravitation. 10 pages, 3 figures. arXiv admin note: text overlap with arXiv:1509.0928

    Answering Mermin's Challenge with Conservation per No Preferred Reference Frame

    Get PDF
    In 1981, Mermin published a now famous paper titled, "Bringing home the atomic world: Quantum mysteries for anybody" that Feynman called, "One of the most beautiful papers in physics that I know." Therein, he presented the "Mermin device" that illustrates the conundrum of quantum entanglement per the Bell spin states for the "general reader." He then challenged the "physicist reader" to explain the way the device works "in terms meaningful to a general reader struggling with the dilemma raised by the device." Herein, we show how "conservation per no preferred reference frame (NPRF)" answers that challenge. In short, the explicit conservation that obtains for Alice and Bob's Stern-Gerlach spin measurement outcomes in the same reference frame holds only on average in different reference frames, not on a trial-by-trial basis. This conservation is SO(3) invariant in the relevant symmetry plane in real space per the SU(2) invariance of its corresponding Bell spin state in Hilbert space. Since NPRF is also responsible for the postulates of special relativity, and therefore its counterintuitive aspects of time dilation and length contraction, we see that the symmetry group relating non-relativistic quantum mechanics and special relativity via their "mysteries" is the restricted Lorentz group.Comment: 18 pages, 9 figures. This version as revised and resubmitted to Scientific Report

    An Adynamical, Graphical Approach to Quantum Gravity and Unification

    Full text link
    We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity and unification. Our proposed reconciliation of general relativity and quantum field theory is based on a modification of their graphical instantiations, i.e., Regge calculus and lattice gauge theory, respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of quantum field theory) called a "spacetimesource element." These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a spacetimesource element is computed using a path integral with discrete graphical action. The action for a spacetimesource element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint between sources, the spacetime metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. We use this approach via modified Regge calculus to correct proper distance in the Einstein-deSitter cosmology model yielding a fit of the Union2 Compilation supernova data that matches LambdaCDM without having to invoke accelerating expansion or dark energy. A similar modification to lattice gauge theory results in an adynamical account of quantum interference.Comment: 47 pages text, 14 figures, revised per recent results, e.g., dark energy result

    Why the Tsirelson Bound? Bub's Question and Fuchs' Desideratum

    Full text link
    To answer Wheeler's question "Why the quantum?" via quantum information theory according to Bub, one must explain both why the world is quantum rather than classical and why the world is quantum rather than superquantum, i.e., "Why the Tsirelson bound?" We show that the quantum correlations and quantum states corresponding to the Bell basis states, which uniquely produce the Tsirelson bound for the Clauser-Horne-Shimony-Holt quantity, can be derived from conservation per no preferred reference frame (NPRF). A reference frame in this context is defined by a measurement configuration, just as with the light postulate of special relativity. We therefore argue that the Tsirelson bound is ultimately based on NPRF just as the postulates of special relativity. This constraint-based/principle answer to Bub's question addresses Fuchs' desideratum that we "take the structure of quantum theory and change it from this very overt mathematical speak ... into something like [special relativity]." Thus, the answer to Bub's question per Fuchs' desideratum is, "the Tsirelson bound obtains due to conservation per NPRF."Comment: Contains corrections to the published versio

    The Missing Mass Problem as a Manifestation of GR Contextuality

    Full text link
    In Newtonian gravity, mass is an intrinsic property of matter while in general relativity (GR), mass is a contextual property of matter, i.e., matter can simultaneously possess two different values of mass when it is responsible for two different spatiotemporal geometries. Herein, we explore the possibility that the astrophysical missing mass attributed to non-baryonic dark matter (DM) actually obtains because we have been assuming the Newtonian view of mass rather than the GR view. Since an exact GR solution for realistic astrophysical situations is not feasible, we explore GR-motivated ansatzes relating proper mass and dynamic mass for one and the same baryonic matter, as justified by GR contextuality. We consider four GR alternatives and find that the GR ansatz motivated by metric perturbation theory works well in fitting galactic rotation curves (THINGS data), the mass profiles of X-ray clusters (ROSAT and ASCA data) and the angular power spectrum of the cosmic microwave background (CMB, Planck 2015 data) without DM. We compare our galactic rotation curve fits to modified Newtonian dynamics (MOND), Burkett halo DM and Navarro-Frenk-White (NFW) halo DM. We compare our X-ray cluster mass profile fits to metric skew-tensor gravity (MSTG) and core-modified NFW DM. We compare our CMB angular power spectrum fit to scalar-tensor-vector gravity (STVG) and Λ\LambdaCDM. Overall, we find our fits to be comparable to those of MOND, MSTG, STVG, Λ\LambdaCDM, Burkett, and NFW. We present and discuss correlations and trends for the best fit values of our fitting parameters. For the most part, the correlations are consistent with well-established results at all scales, which is perhaps surprising given the simple functional form of the GR ansatz.Comment: 18 pages text. Twice revised per referee/reviewer comments. Fit of CMB angular power spectrum and dark matter halo fits adde

    Measurement of vortex flow fields

    Get PDF
    A 3-D laser fluorescence anemometer (LFA) was designed, built, and demonstrated for use in the Langley 16 x 24 inch Water Tunnel. Innovative optical design flexibility combined with compact and portable data acquisition and control systems were incorporated into the instrument. This will allow its use by NASA in other test facilities. A versatile fiber optic system facilities normal and off-axis laser beam alignment, removes mirror losses and improves laser safety. This added optical flexibility will also enable simple adaptation for use in the adjacent jet facility. New proprietary concepts in transmitting color separation, light collection, and novel prism separation of the scattered light was also designed and built into the system. Off-axis beam traverse and alignment complexity led to the requirement for a specialized, programmable transverse controller, and the inclusion of an additional traverse for the off-axis arm. To meet this challenge, an 'in-house' prototype unit was designed and built and traverse control software developed specifically for the water tunnel traverse applications. A specialized data acquisition interface was also required. This was designed and built for the LFA system

    Overlapping functionality of the Pht proteins in zinc homeostasis of streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is a globally significant pathogen that causes a range of diseases, including pneumonia, sepsis, meningitis, and otitis media. Its ability to cause disease depends upon the acquisition of nutrients from its environment, including transition metal ions such as zinc. The pneumococcus employs a number of surface proteins to achieve this, among which are four highly similar polyhistidine triad (Pht) proteins. It has previously been established that these proteins collectively aid in the delivery of zinc to the ABC transporter substrate-binding protein AdcAII. Here we have investigated the contribution of each individual Pht protein to pneumococcal zinc homeostasis by analyzing mutant strains expressing only one of the four pht genes. Under conditions of low zinc availability, each of these mutants showed superior growth and zinc accumulation profiles relative to a mutant strain lacking all four genes, indicating that any of the four Pht proteins are able to facilitate delivery of zinc to AdcAII. However, optimal growth and zinc accumulation in vitro and pneumococcal survival and proliferation in vivo required production of all four Pht proteins, indicating that, despite their overlapping functionality, the proteins are not dispensable without incurring a fitness cost. We also show that surface-attached forms of the Pht proteins are required for zinc recruitment and that they do not contribute to defense against extracellular zinc stress

    Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    Get PDF
    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot-spots. By utilizing this feature, interference between the hydro-instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at National Ignition Facility.Comment: Revised version accepted for publication in PRL. "Copyright (2015) by the American Physical Society.
    corecore