3,068 research outputs found
Modified Regge calculus as an explanation of dark energy
Using Regge calculus, we construct a Regge differential equation for the time
evolution of the scale factor in the Einstein-de Sitter cosmology model
(EdS). We propose two modifications to the Regge calculus approach: 1) we allow
the graphical links on spatial hypersurfaces to be large, as in direct particle
interaction when the interacting particles reside in different galaxies, and 2)
we assume luminosity distance is related to graphical proper distance
by the equation , where the inner product can differ from its usual
trivial form. The modified Regge calculus model (MORC), EdS and CDM
are compared using the data from the Union2 Compilation, i.e., distance moduli
and redshifts for type Ia supernovae. We find that a best fit line through
versus gives a correlation of
0.9955 and a sum of squares error (SSE) of 1.95. By comparison, the best fit
CDM gives SSE = 1.79 using = 69.2 km/s/Mpc, = 0.29
and = 0.71. The best fit EdS gives SSE = 2.68 using =
60.9 km/s/Mpc. The best fit MORC gives SSE = 1.77 and = 73.9 km/s/Mpc
using = 8.38 Gcy and kg, where is the
current graphical proper distance between nodes, is the scaling factor
from our non-trival inner product, and is the nodal mass. Thus, MORC
improves EdS as well as CDM in accounting for distance moduli and
redshifts for type Ia supernovae without having to invoke accelerated
expansion, i.e., there is no dark energy and the universe is always
decelerating.Comment: 15 pages text, 6 figures. Revised as accepted for publication in
Class. Quant. Gra
End of a Dark Age?
We argue that dark matter and dark energy phenomena associated with galactic
rotation curves, X-ray cluster mass profiles, and type Ia supernova data can be
accounted for via small corrections to idealized general relativistic spacetime
geometries due to disordered locality. Accordingly, we fit THINGS rotation
curve data rivaling modified Newtonian dynamics, ROSAT/ASCA X-ray cluster mass
profile data rivaling metric-skew-tensor gravity, and SCP Union2.1 SN Ia data
rivaling CDM without non-baryonic dark matter or a cosmological
constant. In the case of dark matter, we geometrically modify proper mass
interior to the Schwarzschild solution. In the case of dark energy, we modify
proper distance in Einstein-deSitter cosmology. Therefore, the phenomena of
dark matter and dark energy may be chimeras created by an errant belief that
spacetime is a differentiable manifold rather than a disordered graph.Comment: This version was accepted for publication in the International
Journal of Modern Physics D; revised version of an essay that won Honorable
Mention in the Gravity Research Foundation 2016 Awards for Essays on
Gravitation. 10 pages, 3 figures. arXiv admin note: text overlap with
arXiv:1509.0928
Answering Mermin's Challenge with Conservation per No Preferred Reference Frame
In 1981, Mermin published a now famous paper titled, "Bringing home the
atomic world: Quantum mysteries for anybody" that Feynman called, "One of the
most beautiful papers in physics that I know." Therein, he presented the
"Mermin device" that illustrates the conundrum of quantum entanglement per the
Bell spin states for the "general reader." He then challenged the "physicist
reader" to explain the way the device works "in terms meaningful to a general
reader struggling with the dilemma raised by the device." Herein, we show how
"conservation per no preferred reference frame (NPRF)" answers that challenge.
In short, the explicit conservation that obtains for Alice and Bob's
Stern-Gerlach spin measurement outcomes in the same reference frame holds only
on average in different reference frames, not on a trial-by-trial basis. This
conservation is SO(3) invariant in the relevant symmetry plane in real space
per the SU(2) invariance of its corresponding Bell spin state in Hilbert space.
Since NPRF is also responsible for the postulates of special relativity, and
therefore its counterintuitive aspects of time dilation and length contraction,
we see that the symmetry group relating non-relativistic quantum mechanics and
special relativity via their "mysteries" is the restricted Lorentz group.Comment: 18 pages, 9 figures. This version as revised and resubmitted to
Scientific Report
An Adynamical, Graphical Approach to Quantum Gravity and Unification
We use graphical field gradients in an adynamical, background independent
fashion to propose a new approach to quantum gravity and unification. Our
proposed reconciliation of general relativity and quantum field theory is based
on a modification of their graphical instantiations, i.e., Regge calculus and
lattice gauge theory, respectively, which we assume are fundamental to their
continuum counterparts. Accordingly, the fundamental structure is a graphical
amalgam of space, time, and sources (in parlance of quantum field theory)
called a "spacetimesource element." These are fundamental elements of space,
time, and sources, not source elements in space and time. The transition
amplitude for a spacetimesource element is computed using a path integral with
discrete graphical action. The action for a spacetimesource element is
constructed from a difference matrix K and source vector J on the graph, as in
lattice gauge theory. K is constructed from graphical field gradients so that
it contains a non-trivial null space and J is then restricted to the row space
of K, so that it is divergence-free and represents a conserved exchange of
energy-momentum. This construct of K and J represents an adynamical global
constraint between sources, the spacetime metric, and the energy-momentum
content of the element, rather than a dynamical law for time-evolved entities.
We use this approach via modified Regge calculus to correct proper distance in
the Einstein-deSitter cosmology model yielding a fit of the Union2 Compilation
supernova data that matches LambdaCDM without having to invoke accelerating
expansion or dark energy. A similar modification to lattice gauge theory
results in an adynamical account of quantum interference.Comment: 47 pages text, 14 figures, revised per recent results, e.g., dark
energy result
Why the Tsirelson Bound? Bub's Question and Fuchs' Desideratum
To answer Wheeler's question "Why the quantum?" via quantum information
theory according to Bub, one must explain both why the world is quantum rather
than classical and why the world is quantum rather than superquantum, i.e.,
"Why the Tsirelson bound?" We show that the quantum correlations and quantum
states corresponding to the Bell basis states, which uniquely produce the
Tsirelson bound for the Clauser-Horne-Shimony-Holt quantity, can be derived
from conservation per no preferred reference frame (NPRF). A reference frame in
this context is defined by a measurement configuration, just as with the light
postulate of special relativity. We therefore argue that the Tsirelson bound is
ultimately based on NPRF just as the postulates of special relativity. This
constraint-based/principle answer to Bub's question addresses Fuchs'
desideratum that we "take the structure of quantum theory and change it from
this very overt mathematical speak ... into something like [special
relativity]." Thus, the answer to Bub's question per Fuchs' desideratum is,
"the Tsirelson bound obtains due to conservation per NPRF."Comment: Contains corrections to the published versio
The Missing Mass Problem as a Manifestation of GR Contextuality
In Newtonian gravity, mass is an intrinsic property of matter while in
general relativity (GR), mass is a contextual property of matter, i.e., matter
can simultaneously possess two different values of mass when it is responsible
for two different spatiotemporal geometries. Herein, we explore the possibility
that the astrophysical missing mass attributed to non-baryonic dark matter (DM)
actually obtains because we have been assuming the Newtonian view of mass
rather than the GR view. Since an exact GR solution for realistic astrophysical
situations is not feasible, we explore GR-motivated ansatzes relating proper
mass and dynamic mass for one and the same baryonic matter, as justified by GR
contextuality. We consider four GR alternatives and find that the GR ansatz
motivated by metric perturbation theory works well in fitting galactic rotation
curves (THINGS data), the mass profiles of X-ray clusters (ROSAT and ASCA data)
and the angular power spectrum of the cosmic microwave background (CMB, Planck
2015 data) without DM. We compare our galactic rotation curve fits to modified
Newtonian dynamics (MOND), Burkett halo DM and Navarro-Frenk-White (NFW) halo
DM. We compare our X-ray cluster mass profile fits to metric skew-tensor
gravity (MSTG) and core-modified NFW DM. We compare our CMB angular power
spectrum fit to scalar-tensor-vector gravity (STVG) and CDM. Overall,
we find our fits to be comparable to those of MOND, MSTG, STVG, CDM,
Burkett, and NFW. We present and discuss correlations and trends for the best
fit values of our fitting parameters. For the most part, the correlations are
consistent with well-established results at all scales, which is perhaps
surprising given the simple functional form of the GR ansatz.Comment: 18 pages text. Twice revised per referee/reviewer comments. Fit of
CMB angular power spectrum and dark matter halo fits adde
Measurement of vortex flow fields
A 3-D laser fluorescence anemometer (LFA) was designed, built, and demonstrated for use in the Langley 16 x 24 inch Water Tunnel. Innovative optical design flexibility combined with compact and portable data acquisition and control systems were incorporated into the instrument. This will allow its use by NASA in other test facilities. A versatile fiber optic system facilities normal and off-axis laser beam alignment, removes mirror losses and improves laser safety. This added optical flexibility will also enable simple adaptation for use in the adjacent jet facility. New proprietary concepts in transmitting color separation, light collection, and novel prism separation of the scattered light was also designed and built into the system. Off-axis beam traverse and alignment complexity led to the requirement for a specialized, programmable transverse controller, and the inclusion of an additional traverse for the off-axis arm. To meet this challenge, an 'in-house' prototype unit was designed and built and traverse control software developed specifically for the water tunnel traverse applications. A specialized data acquisition interface was also required. This was designed and built for the LFA system
Overlapping functionality of the Pht proteins in zinc homeostasis of streptococcus pneumoniae
Streptococcus pneumoniae is a globally significant pathogen that causes a range of diseases, including pneumonia, sepsis, meningitis, and otitis media. Its ability to cause disease depends upon the acquisition of nutrients from its environment, including transition metal ions such as zinc. The pneumococcus employs a number of surface proteins to achieve this, among which are four highly similar polyhistidine triad (Pht) proteins. It has previously been established that these proteins collectively aid in the delivery of zinc to the ABC transporter substrate-binding protein AdcAII. Here we have investigated the contribution of each individual Pht protein to pneumococcal zinc homeostasis by analyzing mutant strains expressing only one of the four pht genes. Under conditions of low zinc availability, each of these mutants showed superior growth and zinc accumulation profiles relative to a mutant strain lacking all four genes, indicating that any of the four Pht proteins are able to facilitate delivery of zinc to AdcAII. However, optimal growth and zinc accumulation in vitro and pneumococcal survival and proliferation in vivo required production of all four Pht proteins, indicating that, despite their overlapping functionality, the proteins are not dispensable without incurring a fitness cost. We also show that surface-attached forms of the Pht proteins are required for zinc recruitment and that they do not contribute to defense against extracellular zinc stress
Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions
The distribution function of suprathermal ions is found to be self-similar
under conditions relevant to inertial confinement fusion hot-spots. By
utilizing this feature, interference between the hydro-instabilities and
kinetic effects is for the first time assessed quantitatively to find that the
instabilities substantially aggravate the fusion reactivity reduction. The ion
tail depletion is also shown to lower the experimentally inferred ion
temperature, a novel kinetic effect that may explain the discrepancy between
the exploding pusher experiments and rad-hydro simulations and contribute to
the observation that temperature inferred from DD reaction products is lower
than from DT at National Ignition Facility.Comment: Revised version accepted for publication in PRL. "Copyright (2015) by
the American Physical Society.
- …
