6,180 research outputs found

    Evidence for localization and 0.7 anomaly in hole quantum point contacts

    Full text link
    Quantum point contacts implemented in p-type GaAs/AlGaAs heterostructures are investigated by low-temperature electrical conductance spectroscopy measurements. Besides one-dimensional conductance quantization in units of 2e2/h2e^{2}/h a pronounced extra plateau is found at about 0.7(2e2/h)0.7(2e^{2}/h) which possesses the characteristic properties of the so-called "0.7 anomaly" known from experiments with n-type samples. The evolution of the 0.7 plateau in high perpendicular magnetic field reveals the existence of a quasi-localized state and supports the explanation of the 0.7 anomaly based on self-consistent charge localization. These observations are robust when lateral electrical fields are applied which shift the relative position of the electron wavefunction in the quantum point contact, testifying to the intrinsic nature of the underlying physics.Comment: 4.2 pages, 3 figure

    Why Modern Open Source Projects Fail

    Full text link
    Open source is experiencing a renaissance period, due to the appearance of modern platforms and workflows for developing and maintaining public code. As a result, developers are creating open source software at speeds never seen before. Consequently, these projects are also facing unprecedented mortality rates. To better understand the reasons for the failure of modern open source projects, this paper describes the results of a survey with the maintainers of 104 popular GitHub systems that have been deprecated. We provide a set of nine reasons for the failure of these open source projects. We also show that some maintenance practices -- specifically the adoption of contributing guidelines and continuous integration -- have an important association with a project failure or success. Finally, we discuss and reveal the principal strategies developers have tried to overcome the failure of the studied projects.Comment: Paper accepted at 25th International Symposium on the Foundations of Software Engineering (FSE), pages 1-11, 201

    Local Current Distribution and "Hot Spots" in the Integer Quantum Hall Regime

    Full text link
    In a recent experiment, the local current distribution of a two-dimensional electron gas in the quantum Hall regime was probed by measuring the variation of the conductance due to local gating. The main experimental finding was the existence of "hot spots", i.e. regions with high degree of sensitivity to local gating, whose density increases as one approaches the quantum Hall transition. However, the direct connection between these "hot spots" and regions of high current flow is not clear. Here, based on a recent model for the quantum Hall transition consisting of a mixture of perfect and quantum links, the relation between the "hot spots" and the current distribution in the sample has been investigated. The model reproduces the observed dependence of the number and sizes of "hot spots" on the filling factor. It is further demonstrated that these "hot spots" are not located in regions where most of the current flows, but rather, in places where the currents flow both when injected from the left or from the right. A quantitative measure, the harmonic mean of these currents is introduced and correlates very well with the "hot spots" positions

    A chain rule for the expected suprema of Gaussian processes

    Full text link
    The expected supremum of a Gaussian process indexed by the image of an index set under a function class is bounded in terms of separate properties of the index set and the function class. The bound is relevant to the estimation of nonlinear transformations or the analysis of learning algorithms whenever hypotheses are chosen from composite classes, as is the case for multi-layer models

    Origins of conductance anomalies in a p-type GaAs quantum point contact

    Get PDF
    Low temperature transport measurements on a p-GaAs quantum point contact are presented which reveal the presence of a conductance anomaly that is markedly different from the conventional `0.7 anomaly'. A lateral shift by asymmetric gating of the conducting channel is utilized to identify and separate different conductance anomalies of local and generic origins experimentally. While the more generic 0.7 anomaly is not directly affected by changing the gate configuration, a model is proposed which attributes the additional conductance features to a gate-dependent coupling of the propagating states to localized states emerging due to a nearby potential imperfection. Finite bias conductivity measurements reveal the interplay between the two anomalies consistently with a two-impurity Kondo model

    The Effects of Resonant Tunneling on Magnetoresistance through a Q uantum Dot

    Full text link
    The effect of resonant tunneling on magnetoresistance (MR) is studied theoretically in a double junction system. We have found that the ratio of the MR of the resonant peak current is reduced more than that of the single junction, whereas that of the valley current is enhanced depending on the change of the discrete energy-level under the change of magnetic field. We also found that the peak current-valley current (PV) ratio decreases when the junction conductance increases.Comment: 11 pages, 3 figures(mail if you need), use revtex.st

    1/f noise in a dilute GaAs two-dimensional hole system in the insulating phase

    Full text link
    We have measured the resistance and the 1/f resistance noise of a two-dimensional low density hole system in a high mobility GaAs quantum well at low temperature. At densities lower than the metal-insulator transition one, the temperature dependence of the resistance is either power-like or simply activated. The noise decreases when the temperature or the density increase. These results contradict the standard description of independent particles in the strong localization regime. On the contrary, they agree with the percolation picture suggested by higher density results. The physical nature of the system could be a mixture of a conducting and an insulating phase. We compare our results with those of composite thin films.Comment: 4 pages, 3 figures; to appear in Physica E (EP2DS-16 proceedings
    corecore