687 research outputs found
Complex Patterns in Reaction-Diffusion Systems: A Tale of Two Front Instabilities
Two front instabilities in a reaction-diffusion system are shown to lead to
the formation of complex patterns. The first is an instability to transverse
modulations that drives the formation of labyrinthine patterns. The second is a
Nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar
front unstable and gives rise to a pair of counterpropagating fronts. Near the
NIB bifurcation the relation of the front velocity to curvature is highly
nonlinear and transitions between counterpropagating fronts become feasible.
Nonuniformly curved fronts may undergo local front transitions that nucleate
spiral-vortex pairs. These nucleation events provide the ingredient needed to
initiate spot splitting and spiral turbulence. Similar spatio-temporal
processes have been observed recently in the ferrocyanide-iodate-sulfite
reaction.Comment: Text: 14 pages compressed Postscript (90kb) Figures: 9 pages
compressed Postscript (368kb
Surface Crystallization in a Liquid AuSi Alloy
X-ray measurements reveal a crystalline monolayer at the surface of the
eutectic liquid Au_{82}Si_{18}, at temperatures above the alloy's melting
point. Surface-induced atomic layering, the hallmark of liquid metals, is also
found below the crystalline monolayer. The layering depth, however, is
threefold greater than that of all liquid metals studied to date. The
crystallinity of the surface monolayer is notable, considering that AuSi does
not form stable bulk crystalline phases at any concentration and temperature
and that no crystalline surface phase has been detected thus far in any pure
liquid metal or nondilute alloy. These results are discussed in relation to
recently suggested models of amorphous alloys.Comment: 12 pages, 3 figures, published in Science (2006
Propagation Failure in Excitable Media
We study a mechanism of pulse propagation failure in excitable media where
stable traveling pulse solutions appear via a subcritical pitchfork
bifurcation. The bifurcation plays a key role in that mechanism. Small
perturbations, externally applied or from internal instabilities, may cause
pulse propagation failure (wave breakup) provided the system is close enough to
the bifurcation point. We derive relations showing how the pitchfork
bifurcation is unfolded by weak curvature or advective field perturbations and
use them to demonstrate wave breakup. We suggest that the recent observations
of wave breakup in the Belousov-Zhabotinsky reaction induced either by an
electric field or a transverse instability are manifestations of this
mechanism.Comment: 8 pages. Aric Hagberg: http://cnls.lanl.gov/~aric; Ehud
Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm
Multi-Phase Patterns in Periodically Forced Oscillatory Systems
Periodic forcing of an oscillatory system produces frequency locking bands
within which the system frequency is rationally related to the forcing
frequency. We study extended oscillatory systems that respond to uniform
periodic forcing at one quarter of the forcing frequency (the 4:1 resonance).
These systems possess four coexisting stable states, corresponding to uniform
oscillations with successive phase shifts of . Using an amplitude
equation approach near a Hopf bifurcation to uniform oscillations, we study
front solutions connecting different phase states. These solutions divide into
two groups: -fronts separating states with a phase shift of and
-fronts separating states with a phase shift of . We find a new
type of front instability where a stationary -front ``decomposes'' into a
pair of traveling -fronts as the forcing strength is decreased. The
instability is degenerate for an amplitude equation with cubic nonlinearities.
At the instability point a continuous family of pair solutions exists,
consisting of -fronts separated by distances ranging from zero to
infinity. Quintic nonlinearities lift the degeneracy at the instability point
but do not change the basic nature of the instability. We conjecture the
existence of similar instabilities in higher 2n:1 resonances (n=3,4,..) where
stationary -fronts decompose into n traveling -fronts. The
instabilities designate transitions from stationary two-phase patterns to
traveling 2n-phase patterns. As an example, we demonstrate with a numerical
solution the collapse of a four-phase spiral wave into a stationary two-phase
pattern as the forcing strength within the 4:1 resonance is increased
Monovalent Ion Condensation at the Electrified Liquid/Liquid Interface
X-ray reflectivity studies demonstrate the condensation of a monovalent ion
at the electrified interface between electrolyte solutions of water and
1,2-dichloroethane. Predictions of the ion distributions by standard
Poisson-Boltzmann (Gouy-Chapman) theory are inconsistent with these data at
higher applied interfacial electric potentials. Calculations from a
Poisson-Boltzmann equation that incorporates a non-monotonic ion-specific
potential of mean force are in good agreement with the data.Comment: 4 pages, 4 figure
A Phase Front Instability in Periodically Forced Oscillatory Systems
Multiplicity of phase states within frequency locked bands in periodically
forced oscillatory systems may give rise to front structures separating states
with different phases. A new front instability is found within bands where
(). Stationary fronts shifting the
oscillation phase by lose stability below a critical forcing strength and
decompose into traveling fronts each shifting the phase by . The
instability designates a transition from stationary two-phase patterns to
traveling -phase patterns
Initial Conditions for Models of Dynamical Systems
The long-time behaviour of many dynamical systems may be effectively
predicted by a low-dimensional model that describes the evolution of a reduced
set of variables. We consider the question of how to equip such a
low-dimensional model with appropriate initial conditions, so that it
faithfully reproduces the long-term behaviour of the original high-dimensional
dynamical system. Our method involves putting the dynamical system into normal
form, which not only generates the low-dimensional model, but also provides the
correct initial conditions for the model. We illustrate the method with several
examples.
Keywords: normal form, isochrons, initialisation, centre manifoldComment: 24 pages in standard LaTeX, 66K, no figure
Excitable media in open and closed chaotic flows
We investigate the response of an excitable medium to a localized
perturbation in the presence of a two-dimensional smooth chaotic flow. Two
distinct types of flows are numerically considered: open and closed. For both
of them three distinct regimes are found, depending on the relative strengths
of the stirring and the rate of the excitable reaction. In order to clarify and
understand the role of the many competing mechanisms present, simplified models
of the process are introduced. They are one-dimensional baker-map models for
the flow and a one-dimensional approximation for the transverse profile of the
filaments.Comment: 14 pages, 16 figure
Anomalous layering at the liquid Sn surface
X-ray reflectivity measurements on the free surface of liquid Sn are
presented. They exhibit the high-angle peak, indicative of surface-induced
layering, also found for other pure liquid metals (Hg, Ga and In). However, a
low-angle peak, not hitherto observed for any pure liquid metal, is also found,
indicating the presence of a high-density surface layer. Fluorescence and
resonant reflectivity measurements rule out the assignment of this layer to
surface-segregation of impurities. The reflectivity is modelled well by a 10%
contraction of the spacing between the first and second atomic surface layers,
relative to that of subsequent layers. Possible reasons for this are discussed.Comment: 8 pages, 9 figures; to be submitted to Phys. Rev. B; updated
references, expanded discussio
Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments
- …
