1,465 research outputs found
Core measures of inflation as predictors of total inflation
Policymakers tend to focus on core inflation measures because they are thought to be better predictors of total inflation over time horizons of import to policymakers. The authors find little support for this assumption. While some measures of core inflation are less volatile than total inflation, core inflation is not necessarily the best predictor of total inflation. The relative forecasting performance of models using core inflation and those using only total inflation depends on the inflation measure and time horizon of the forecast. Unlike previous studies, the authors provide a measure of the statistical significance of the difference in forecast errors. ; Supersedes Working Paper 08-9.Inflation (Finance)
Core measures of inflation as predictors of total inflation
Two rationales offered for policymakers' focus on core measures of inflation as a guide to underlying inflation are that core inflation omits food and energy prices, which are thought to be more volatile than other components, and that core inflation is thought to be a better predictor of total inflation over time horizons of import to policymakers. The authors' investigation finds little support for either rationale. They find that food and energy prices are not the most volatile components of inflation and that depending on which inflation measure is used, core inflation is not necessarily the best predictor of total inflation. However, they do find that combining CPI and PCE inflation measures can lead to statistically significant more accurate forecasts of each inflation measure, suggesting that each measure includes independent information that can be exploited to yield better forecasts.Inflation (Finance)
Electrostatic Patch Effect in Cylindrical Geometry. I. Potential and Energy between Slightly Non-Coaxial Cylinders
We study the effect of any uneven voltage distribution on two close
cylindrical conductors with parallel axes that are slightly shifted in the
radial and by any length in the axial direction. The investigation is
especially motivated by certain precision measurements, such as the Satellite
Test of the Equivalence Principle (STEP). By energy conservation, the force can
be found as the energy gradient in the vector of the shift, which requires
determining potential distribution and energy in the gap. The boundary value
problem for the potential is solved, and energy is thus found to the second
order in the small transverse shift, and to lowest order in the gap to cylinder
radius ratio. The energy consists of three parts: the usual capacitor part due
to the uniform potential difference, the one coming from the interaction
between the voltage patches and the uniform voltage difference, and the energy
of patch interaction, entirely independent of the uniform voltage. Patch effect
forces and torques in the cylindrical configuration are derived and analyzed in
the next two parts of this work.Comment: 26 pages, 1 Figure. Submitted to Classical and Quantum Gravit
The Laser Astrometric Test of Relativity Mission
This paper discusses new fundamental physics experiment to test relativistic
gravity at the accuracy better than the effects of the 2nd order in the
gravitational field strength. The Laser Astrometric Test Of Relativity (LATOR)
mission uses laser interferometry between two micro-spacecraft whose lines of
sight pass close by the Sun to accurately measure deflection of light in the
solar gravity. The key element of the experimental design is a redundant
geometry optical truss provided by a long-baseline (100 m) multi-channel
stellar optical interferometer placed on the International Space Station. The
geometric redundancy enables LATOR to measure the departure from Euclidean
geometry caused by the solar gravity field to a very high accuracy. LATOR will
not only improve the value of the parameterized post-Newtonian (PPN) parameter
gamma to unprecedented levels of accuracy of 1 part in 1e8, it will also reach
ability to measure effects of the next post-Newtonian order (1/c^4) of light
deflection resulting from gravity's intrinsic non-linearity. The solar
quadrupole moment parameter, J2, will be measured with high precision, as well
as a variety of other relativistic. LATOR will lead to very robust advances in
the tests of fundamental physics: this mission could discover a violation or
extension of general relativity, or reveal the presence of an additional long
range interaction in the physical law. There are no analogs to the LATOR
experiment; it is unique and is a natural culmination of solar system gravity
experiments.Comment: 8 pages, 2 figures, invited talk given at the Second International
Conference on Particle and Fundamental Physics in Space (SpacePart'03), 10-12
December 2003, Washington, D
Evolution of disease phenotype in adult and pediatric onset Crohn’s disease in a population-based cohort.
Dynamical Elliptical Diagnostics of the Antarctic Polar Vortex
Elliptical diagnostics provide dynamical and climatological information about the behavior of the Arctic and Antarctic stratospheric polar vortices. Here Kida’s model, describing the evolution of a uniform vortex in a linear, but possibly unsteady, background flow, is used to interpret the observed evolution of the Antarctic vortex in late winter during 1999–2018. Kida’s model has oscillatory solutions that can undergo an amplitude bifurcation, which serves as a simple model for the onset of vortex-splitting stratospheric sudden warmings (SSWs). A data assimilation method is used to find solutions of Kida’s equations consistent with the observations. A phase-plane analysis reveals large interannual variability in the amplitude of oscillations of the vortex. In 2002, the year of the only observed vortex-splitting Antarctic SSW, the system is found to cross a separatrix in phase space, associated with the SSW amplitude bifurcation, in late September. An output of the data assimilation is the linear background flow experienced by the vortex. The rotational component of this linear flow is consistent with the vortex being embedded in an anticyclonic background. The time-mean strain flow is weak but has a clear orientation, consistent with the presence of stationary forcing due to planetary-scale topography and land–sea contrast. The time-varying strain flow is comparatively large in magnitude, illustrating the relative importance of the planetary-scale component of the turbulent dynamics occurring at tropopause level. Unlike in the Northern Hemisphere, therefore, the direction of future Antarctic vortex splits will not necessarily align with the direction of the 2002 split
Resonant nonlinear magneto-optical effects in atoms
In this article, we review the history, current status, physical mechanisms,
experimental methods, and applications of nonlinear magneto-optical effects in
atomic vapors. We begin by describing the pioneering work of Macaluso and
Corbino over a century ago on linear magneto-optical effects (in which the
properties of the medium do not depend on the light power) in the vicinity of
atomic resonances, and contrast these effects with various nonlinear
magneto-optical phenomena that have been studied both theoretically and
experimentally since the late 1960s. In recent years, the field of nonlinear
magneto-optics has experienced a revival of interest that has led to a number
of developments, including the observation of ultra-narrow (1-Hz)
magneto-optical resonances, applications in sensitive magnetometry, nonlinear
magneto-optical tomography, and the possibility of a search for parity- and
time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002,
Figure added, typos corrected, text edited for clarit
Hydrostatic pressure does not cause detectable changes to survival of human retinal ganglion
Purpose: Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods: A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results: Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina
Space-based research in fundamental physics and quantum technologies
Space-based experiments today can uniquely address important questions
related to the fundamental laws of Nature. In particular, high-accuracy physics
experiments in space can test relativistic gravity and probe the physics beyond
the Standard Model; they can perform direct detection of gravitational waves
and are naturally suited for precision investigations in cosmology and
astroparticle physics. In addition, atomic physics has recently shown
substantial progress in the development of optical clocks and atom
interferometers. If placed in space, these instruments could turn into powerful
high-resolution quantum sensors greatly benefiting fundamental physics.
We discuss the current status of space-based research in fundamental physics,
its discovery potential, and its importance for modern science. We offer a set
of recommendations to be considered by the upcoming National Academy of
Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the
Decadal Survey should include space-based research in fundamental physics as
one of its focus areas. We recommend establishing an Astronomy and Astrophysics
Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess
the status of both ground- and space-based efforts in the field, to identify
the most important objectives, and to suggest the best ways to organize the
work of several federal agencies involved. We also recommend establishing a new
NASA-led interagency program in fundamental physics that will consolidate new
technologies, prepare key instruments for future space missions, and build a
strong scientific and engineering community. Our goal is to expand NASA's
science objectives in space by including ``laboratory research in fundamental
physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph
- …
