3,394 research outputs found
Topological Implications of the Total Generalized Electron-Flow Magnetic Helicity Invariant in Electron Magnetohydrodynamics
Topological implications of the total generalized electron-flow magnetic
helicity He in electron magnetohydrodynamics(EMHD) are explored. The invariance
of He is shown to imply the invariance of the sum of the linkage of the
magnetic field lines, the linkage of electron-flow vorticity field lines and
the mutual linkage among these two sets of field lines. This result appears to
support a change in the magnetic field topology and hence pave the way for
magnetic reconnection in EMHD via a change in the concomitant electron-flow
vorticity topology
Theory of Tunneling Spectroscopy in a Mn Single-Electron Transistor by Density-Functional Theory Methods
We consider tunneling transport through a Mn molecular magnet using
spin density functional theory. A tractable methodology for constructing
many-body wavefunctions from Kohn-Sham orbitals allows for the determination of
spin-dependent matrix elements for use in transport calculations. The tunneling
conductance at finite bias is characterized by peaks representing transitions
between spin multiplets, separated by an energy on the order of the magnetic
anisotropy. The energy splitting of the spin multiplets and the spatial part of
their many-body wave functions, describing the orbital degrees of freedom of
the excess charge, strongly affect the electronic transport, and can lead to
negative differential conductance.Comment: 4 pages, 3 figures, a revised version with minor change
A Tidally-Disrupted Asteroid Around the White Dwarf G29-38
The infrared excess around the white dwarf G29-38 can be explained by
emission from an opaque flat ring of dust with an inner radius 0.14 of the
radius of the Sun and an outer radius approximately equal to the Sun's. This
ring lies within the Roche region of the white dwarf where an asteroid could
have been tidally destroyed, producing a system reminiscent of Saturn's rings.
Accretion onto the white dwarf from this circumstellar dust can explain the
observed calcium abundance in the atmosphere of G29-38. Either as a bombardment
by a series of asteroids or because of one large disruption, the total amount
of matter accreted onto the white dwarf may have been comparable to the total
mass of asteroids in the Solar System, or, equivalently, about 1% of the mass
in the asteroid belt around the main sequence star zeta Lep.Comment: ApJ Letters, in pres
Technical note: A geostatistical fixed-lag Kalman smoother for atmospheric inversions
International audienceInverse modeling methods are now commonly used for estimating surface fluxes of carbon dioxide, using atmospheric mass fraction measurements combined with a numerical atmospheric transport model. The geostatistical approach to flux estimation takes advantage of the spatial and/or temporal correlation in fluxes and does not require prior flux estimates. In this work, a geostatistical implementation of a fixed-lag Kalman smoother is developed to improve the computational efficiency of the inverse problem. This method makes it feasible to perform multi-year inversions, at fine resolutions, and with large amounts of data. The new method is applied to the recovery of global gridscale carbon dioxide fluxes for 1997 to 2001 using pseudodata representative of a subset of the NOAA-ESRL Cooperative Air Sampling Network
Electron-magnon coupling and nonlinear tunneling transport in magnetic nanoparticles
We present a theory of single-electron tunneling transport through a
ferromagnetic nanoparticle in which particle-hole excitations are coupled to
spin collective modes. The model employed to describe the interaction between
quasiparticles and collective excitations captures the salient features of a
recent microscopic study. Our analysis of nonlinear quantum transport in the
regime of weak coupling to the external electrodes is based on a rate-equation
formalism for the nonequilibrium occupation probability of the nanoparticle
many-body states. For strong electron-boson coupling, we find that the
tunneling conductance as a function of bias voltage is characterized by a large
and dense set of resonances. Their magnetic field dependence in the large-field
regime is linear, with slopes of the same sign. Both features are in agreement
with recent tunneling experiments.Comment: 4 pages, 2 figure
Editorial: Endoplasmic Reticulum and Its Role in Tumor Immunity.
Published onlineJournal ArticleN/
Atmospheric inverse modeling with known physical bounds: an example from trace gas emissions
Many inverse problems in the atmospheric sciences involve parameters with
known physical constraints. Examples include nonnegativity (e.g., emissions
of some urban air pollutants) or upward limits implied by reaction or
solubility constants. However, probabilistic inverse modeling approaches
based on Gaussian assumptions cannot incorporate such bounds and thus often
produce unrealistic results. The atmospheric literature lacks consensus on
the best means to overcome this problem, and existing atmospheric studies
rely on a limited number of the possible methods with little examination of
the relative merits of each.
<br><br>
This paper investigates the applicability of several approaches to
bounded inverse problems. A common method of data transformations is found to
unrealistically skew estimates for the examined example
application. The method of Lagrange multipliers and two Markov chain Monte Carlo (MCMC) methods
yield more realistic and accurate results. In general, the examined
MCMC approaches produce the most realistic result but can require
substantial computational time. Lagrange multipliers offer an
appealing option for large, computationally intensive problems
when exact uncertainty bounds are less central to the
analysis. A synthetic data inversion of US anthropogenic methane
emissions illustrates the strengths and weaknesses of each approach
Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films
The ultra-violet (UV) and vacuum ultra-violet (VUV) resistance of bridging alkylene groups in organosilica films has been investigated. Similar to the Si-CH3 (methyl) bonds, the Si-CH2-Si (methylene) bonds are not affected by 5.6 eV irradiation. On the other hand, the concentration of the Si-CH2-CH2-Si (ethylene) groups decreases during such UV exposure. More significant difference in alkylene reduction is observed when the films are exposed to VUV (7.2 eV). The ethylene groups are depleted by more than 75% while only about 40% methylene and methyl groups loss is observed. The different sensitivity of bridging groups to VUV light should be taken into account during the development of curing and plasma etch processes of low-k materials based on periodic mesoporous organosilicas and oxycarbosilanes. The experimental results are qualitatively supported by ab-initio quantum-chemical calculations
Spatial and temporal resolution of carbon flux estimates for 1983?2002
International audienceWe discuss the spatial and temporal resolution of monthly carbon flux estimates for the period 1983?2002 using a fixed-lag Kalman Smoother technique with a global chemical transport model, and the GLOBALVIEW data product. The observational network has expanded substantially over this period, and we the improvement in the constraints provided flux estimates by observations for the 1990's in comparison to the 1980's. The estimated uncertainties also decrease as observational coverage expands. In this study, we use the Globalview data product for a network that changes every 5 y, rather than using a small number of continually-operating sites (fewer observational constraints) or a large number of sites, some of which may consist almost entirely of extrapolated data. We show that the discontinuities resulting from network changes reflect uncertainty due to a sparse and variable network. This uncertainty effectively limits the resolution of trends in carbon fluxes. The ability of the inversion to distinguish, or resolve, carbon fluxes at various spatial scales is examined using a diagnostic known as the resolution kernel. We find that the global partition between land and ocean fluxes is well-resolved even for the very sparse network of the 1980's, although prior information makes a significant contribution to the resolution. The ability to distinguish zonal average fluxes has improved significantly since the 1980's, especially for the tropics, where the zonal ocean and land biosphere fluxes can be distinguished. Care must be taken when interpreting zonal average fluxes, however, since the lack of air samples for some regions in a zone may result in a large influence from prior flux estimates for these regions. We show that many of the TransCom 3 source regions are distinguishable throughout the period over which estimates are produced. Examples are Boreal and Temperate North America. The resolution of fluxes from Europe and Australia has greatly improved since the 1990's. Other regions, notably Tropical South America and the Equatorial Atlantic remain practically unresolved. Comparisons of the average seasonal cycle of the estimated carbon fluxes with the seasonal cycle of the prior flux estimates reveals a large adjustment of the summertime uptake of carbon for Boreal Eurasia, and an earlier onset of springtime uptake for Temperate North America. In addition, significantly larger seasonal cycles are obtained for some ocean regions, such as the Northern Ocean, North Pacific, North Atlantic and Western Equatorial Pacific, regions that appear to be well-resolved by the inversion
- …
