5,006 research outputs found

    Continuum Theory for Piezoelectricity in Nanotubes and Nanowires

    Full text link
    We develop and solve a continuum theory for the piezoelectric response of one dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in BN nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a BN nanotube in response to a uniaxial stress.Comment: 4 pages in RevTex4, 2 epsf figure

    Can conventional forces really explain the anomalous acceleration of Pioneer 10/11 ?

    Full text link
    A conventional explanation of the correlation between the Pioneer 10/11 anomalous acceleration and spin-rate change is given. First, the rotational Doppler shift analysis is improved. Finally, a relation between the radio beam reaction force and the spin-rate change is established. Computations are found in good agreement with observational data. The relevance of our result to the main Pioneer 10/11 anomalous acceleration is emphasized. Our analysis leads us to conclude that the latter may not be merely artificial.Comment: 9 pages, no figur

    The 2PI finite temperature effective potential of the O(N) linear sigma model in 1+1 dimensions, at next-to-leading order in 1/N

    Full text link
    We study the O(N) linear sigma model in 1+1 dimensions. We use the 2PI formalism of Cornwall, Jackiw and Tomboulis in order to evaluate the effective potential at finite temperature. At next-to-leading order in a 1/N expansion one has to include the sums over "necklace" and generalized "sunset" diagrams. We find that - in contrast to the Hartree approximation - there is no spontaneous symmetry breaking in this approximation, as to be expected for the exact theory. The effective potential becomes convex throughout for all parameter sets which include N=4,10,100, couplings lambda=0.1 and 0.5, and temperatures between 0.2 and 1. The Green's functions obtained by solving the Schwinger-Dyson equations are enhanced in the infrared region. We also compare the effective potential as function of the external field phi with those obtained in various other approximations.Comment: 19 pages, 9 figures; v2: references added, some changes in the tex

    Carbon Nanotubes in Helically Modulated Potentials

    Get PDF
    We calculate effects of an applied helically symmetric potential on the low energy electronic spectrum of a carbon nanotube in the continuum approximation. The spectrum depends on the strength of this potential and on a dimensionless geometrical parameter, P, which is the ratio of the circumference of the nanotube to the pitch of the helix. We find that the minimum band gap of a semiconducting nanotube is reduced by an arbitrarily weak helical potential, and for a given field strength there is an optimal P which produces the biggest change in the band gap. For metallic nanotubes the Fermi velocity is reduced by this potential and for strong fields two small gaps appear at the Fermi surface in addition to the gapless Dirac point. A simple model is developed to estimate the magnitude of the field strength and its effect on DNA-CNT complexes in an aqueous solution. We find that under typical experimental conditions the predicted effects of a helical potential are likely to be small and we discuss several methods for increasing the size of these effects.Comment: 12 pages, 10 figures. Accepted for publication in Physical Review B. Image quality reduced to comply with arxiv size limitation

    A brief review of low-dose rate (LDR) and high-dose rate (HDR) brachytherapy boost for high-risk prostate

    Get PDF
    For patients with unfavorable or high-risk prostate cancer, dose escalated radiation therapy leads to improved progression free survival but attempts to deliver increased dose by external beam radiation therapy (EBRT) alone can be limited by late toxicities to nearby genitourinary and gastrointestinal organs at risk. Brachytherapy is a method to deliver dose escalation in conjunction with EBRT with a potentially improved late toxicity profile and improved prostate cancer related outcomes. At least three randomized controlled trials have demonstrated improved biochemical control with the addition of either low-dose rate (LDR) or high-dose rate (HDR) brachytherapy to EBRT, although only ASCENDE-RT compared brachytherapy to dose-escalated EBRT but did report an over 50% improvement in biochemical failure with a LDR boost. Multiple single institution and comparative research series also support the use of a brachytherapy boost in the DE-EBRT era and demonstrate excellent prostate cancer specific outcomes. Despite improved oncologic outcomes with a brachytherapy boost in the high-risk setting, the utilization of both LDR, and HDR brachytherapy use is declining. The acute genitourinary toxicities when brachytherapy boost is combined with EBRT, particularly a LDR boost, are of concern in comparison to EBRT alone. HDR brachytherapy boost has many physical properties inherent to its rapid delivery of a large dose which may reduce acute toxicities and also appeal to the radiobiology of prostate cancer. We herein review the evidence for use of either LDR or HDR brachytherapy boost for high-risk prostate cancer and summarize comparisons between the two treatment modalities

    Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli

    Get PDF
    AbstractEscherichia coli that are capable of causing human disease are often classified into pathogenic variants (pathovars) based on their virulence gene content. However, disease-associated hybrid E. coli, containing unique combinations of multiple canonical virulence factors have also been described. Such was the case of the E. coli O104:H4 outbreak in 2011, which caused significant morbidity and mortality. Among the pathovars of diarrheagenic E. coli that cause significant human disease are the enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). In the current study we use comparative genomics, transcriptomics, and functional studies to characterize isolates that contain virulence factors of both EPEC and ETEC. Based on phylogenomic analysis, these hybrid isolates are more genomically-related to EPEC, but appear to have acquired ETEC virulence genes. Global transcriptional analysis using RNA sequencing, demonstrated that the EPEC and ETEC virulence genes of these hybrid isolates were differentially-expressed under virulence-inducing laboratory conditions, similar to reference isolates. Immunoblot assays further verified that the virulence gene products were produced and that the T3SS effector EspB of EPEC, and heat-labile toxin of ETEC were secreted. These findings document the existence and virulence potential of an E. coli pathovar hybrid that blurs the distinction between E. coli pathovars.</jats:p
    corecore